Author
Listed:
- Aiping Wu
- Yousong Peng
- Xiangjun Du
- Yuelong Shu
- Taijiao Jiang
Abstract
The variants of human influenza virus have caused, and continue to cause, substantial morbidity and mortality. Timely and accurate assessment of their impact on human death is invaluable for influenza planning but presents a substantial challenge, as current approaches rely mostly on intensive and unbiased influenza surveillance. In this study, by proposing a novel host-virus interaction model, we have established a positive correlation between the excess mortalities caused by viral strains of distinct antigenicity and their antigenic distances to their previous strains for each (sub)type of seasonal influenza viruses. Based on this relationship, we further develop a method to rapidly assess the mortality burden of influenza A(H1N1) virus by accurately predicting the antigenic distance between A(H1N1) strains. Rapid estimation of influenza mortality burden for new seasonal strains should help formulate a cost-effective response for influenza control and prevention.Author Summary: In epidemiology, investigators usually rely on surveillance data to assess the impact of an influenza virus on human health. However, accurate assessment of the influenza mortality burden at the early stage of influenza infection is rather challenging because the early influenza surveillance data are very limited and prone to bias as well. This speaks to an urgent need for the development of a more effective method for rapid and accurate estimation of influenza mortality burden. By proposing a novel host-virus interaction model, we have established a quantitative relationship between the antigenic variation of human influenza virus and its mortality burden. Based on this relationship, we further develop a method to rapidly assess the mortality burden of influenza A(H1N1) virus by accurately predicting the antigenic distance between A(H1N1) strains. We believe that our work will help develop a timely and sensible influenza preparedness programme that balances the gains of public health with the social and economic costs.
Suggested Citation
Aiping Wu & Yousong Peng & Xiangjun Du & Yuelong Shu & Taijiao Jiang, 2010.
"Correlation of Influenza Virus Excess Mortality with Antigenic Variation: Application to Rapid Estimation of Influenza Mortality Burden,"
PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-10, August.
Handle:
RePEc:plo:pcbi00:1000882
DOI: 10.1371/journal.pcbi.1000882
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000882. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.