IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000825.html
   My bibliography  Save this article

Slope-Based Stochastic Resonance: How Noise Enables Phasic Neurons to Encode Slow Signals

Author

Listed:
  • Yan Gai
  • Brent Doiron
  • John Rinzel

Abstract

Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise, phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR) like effect differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system, phasic models are most sensitive to the signal's rising and falling phases where the slopes are steep. This finding is consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular biological mechanism.Author Summary: Principal brain cells, called neurons, show a tremendous amount of diversity in their responses to driving stimuli. A widely present but understudied class of neurons prefers to respond to high-frequency inputs and neglect slow variations; these cells are called phasic neurons. Although phasic neurons do not normally respond to slow signals, we show that noise, a ubiquitous neural input, can enable them to respond to distinct features of slow signals. We emphasize the fact that, in the presence of noise, they are still sensitive to the change in stimulus, rather than to the constant part of the slow inputs, just as they are for fast inputs without noise. This feature distinguishes the response of phasic neurons from those of other neurons, which show more sensitivity to the amplitude of their inputs. We believe that our study has significantly broadened the understanding about the information-processing ability and functional roles of phasic neurons.

Suggested Citation

  • Yan Gai & Brent Doiron & John Rinzel, 2010. "Slope-Based Stochastic Resonance: How Noise Enables Phasic Neurons to Encode Slow Signals," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1000825
    DOI: 10.1371/journal.pcbi.1000825
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000825
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000825&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng Ly & Brent Doiron, 2009. "Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    2. Wang, Li & Gong, Yubing & Lin, Xiu, 2012. "Ordered chaotic bursting and multiple coherence resonance by time-periodic coupling strength in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 131-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.