Author
Listed:
- Sepp Kollmorgen
- Nora Nortmann
- Sylvia Schröder
- Peter König
Abstract
Visual attention is thought to be driven by the interplay between low-level visual features and task dependent information content of local image regions, as well as by spatial viewing biases. Though dependent on experimental paradigms and model assumptions, this idea has given rise to varying claims that either bottom-up or top-down mechanisms dominate visual attention. To contribute toward a resolution of this discussion, here we quantify the influence of these factors and their relative importance in a set of classification tasks. Our stimuli consist of individual image patches (bubbles). For each bubble we derive three measures: a measure of salience based on low-level stimulus features, a measure of salience based on the task dependent information content derived from our subjects' classification responses and a measure of salience based on spatial viewing biases. Furthermore, we measure the empirical salience of each bubble based on our subjects' measured eye gazes thus characterizing the overt visual attention each bubble receives. A multivariate linear model relates the three salience measures to overt visual attention. It reveals that all three salience measures contribute significantly. The effect of spatial viewing biases is highest and rather constant in different tasks. The contribution of task dependent information is a close runner-up. Specifically, in a standardized task of judging facial expressions it scores highly. The contribution of low-level features is, on average, somewhat lower. However, in a prototypical search task, without an available template, it makes a strong contribution on par with the two other measures. Finally, the contributions of the three factors are only slightly redundant, and the semi-partial correlation coefficients are only slightly lower than the coefficients for full correlations. These data provide evidence that all three measures make significant and independent contributions and that none can be neglected in a model of human overt visual attention.Author Summary: In our lifetime we make about 5 billion eye movements. Yet our knowledge about what determines where we look at is surprisingly sketchy. Some traditional approaches assume that gaze is guided by simple image properties like local contrast (low-level features). Recent arguments emphasize the influence of tasks (high-level features) and motor constraints (spatial bias). The relative importance of these factors is still a topic of debate. In this study, subjects view and classify natural scenery and faces while their eye movements are recorded. The stimuli are composed of small image patches. For each of these patches we derive a measure for low-level features and spatial bias. Utilizing the subjects' classification responses, we additionally derive a measure reflecting the information content of a patch with respect to the classification task (high-level features). We show that the effect of spatial bias is highest, that high-level features are a close runner-up, and that low-level features have, on average, a smaller influence. Remarkably, the different contributions are mostly independent. Hence, all three measures contribute to the guidance of eye movements and have to be considered in a model of human visual attention.
Suggested Citation
Sepp Kollmorgen & Nora Nortmann & Sylvia Schröder & Peter König, 2010.
"Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention,"
PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-20, May.
Handle:
RePEc:plo:pcbi00:1000791
DOI: 10.1371/journal.pcbi.1000791
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000791. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.