Author
Listed:
- Alexander Statnikov
- Constantin F Aliferis
Abstract
Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities.Author Summary: One of the promises of personalized medicine is to use molecular information to better diagnose, manage, and treat disease. This promise is enabled through the use of molecular signatures that are computational models to predict a phenotype of interest from high-throughput assay data. Many molecular signatures have been developed to date, and some passed regulatory approval and are currently used in clinical practice. However, researchers have noted that it is possible to develop many different and equivalently accurate molecular signatures for the same phenotype and population. This phenomenon of signature multiplicity has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. Our results shed light on the causes of signature multiplicity and provide a method for extracting all equivalently accurate signatures from high-throughput data.
Suggested Citation
Alexander Statnikov & Constantin F Aliferis, 2010.
"Analysis and Computational Dissection of Molecular Signature Multiplicity,"
PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
Handle:
RePEc:plo:pcbi00:1000790
DOI: 10.1371/journal.pcbi.1000790
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Lagani, Vincenzo & Athineou, Giorgos & Farcomeni, Alessio & Tsagris, Michail & Tsamardinos, Ioannis, 2017.
"Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i07).
- Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013.
"Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks,"
PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.