IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000693.html
   My bibliography  Save this article

Molecular Structures of Quiescently Grown and Brain-Derived Polymorphic Fibrils of the Alzheimer Amyloid Aβ9-40 Peptide: A Comparison to Agitated Fibrils

Author

Listed:
  • Chun Wu
  • Michael T Bowers
  • Joan-Emma Shea

Abstract

The presence of amyloid deposits consisting primarily of Amyloid-β (Aβ) fibril in the brain is a hallmark of Alzheimer's disease (AD). The morphologies of these fibrils are exquisitely sensitive to environmental conditions. Using molecular dynamics simulations combined with data from previously published solid-state NMR experiments, we propose the first atomically detailed structures of two asymmetric polymorphs of the Aβ9-40 peptide fibril. The first corresponds to synthetic fibrils grown under quiescent conditions and the second to fibrils derived from AD patients' brain-extracts. Our core structure in both fibril structures consists of a layered structure in which three cross-β subunits are arranged in six tightly stacked β-sheet layers with an antiparallel hydrophobic-hydrophobic and an antiparallel polar-polar interface. The synthetic and brain-derived structures differ primarily in the side-chain orientation of one β-strand. The presence of a large and continually exposed hydrophobic surface (buried in the symmetric agitated Aβ fibrils) may account for the higher toxicity of the asymmetric fibrils. Our model explains the effects of external perturbations on the fibril lateral architecture as well as the fibrillogenesis inhibiting action of amphiphilic molecules.Author Summary: Amyloid diseases are characterized by the presence of amyloid fibrils on organs and tissue in the body. Alzheimer's disease, Parkinson's diseases and Type II Diabetes are all examples of amyloid diseases. Determining the structure of amyloid fibrils is critical for understanding the mechanism of fibril formation as well as for the design of inhibitor molecules that can prevent aggregation. In the case of the Alzheimer Amyloid-β (Aβ) peptide, the structure of fibrils grown under conditions of mechanical agitation has been elucidated from a combination of simulation and experiments. However, the structures of the asymmetric quiescent Aβ fibrils (grown under conditions akin to physiological conditions) and of Alzheimer's brain–derived fibrils are not known. In this paper, we propose the first atomically detailed structures of these two fibrils, using molecular dynamics simulations combined with data from previously published experiments. In additions, we suggest a unifying lateral growth mechanism that explains the increased toxicity of quiescent Aβ fibrils, the effects of external perturbations on fibril lateral architecture and the inhibition mechanism of the small molecule inhibitors on fibril formation.

Suggested Citation

  • Chun Wu & Michael T Bowers & Joan-Emma Shea, 2010. "Molecular Structures of Quiescently Grown and Brain-Derived Polymorphic Fibrils of the Alzheimer Amyloid Aβ9-40 Peptide: A Comparison to Agitated Fibrils," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-12, March.
  • Handle: RePEc:plo:pcbi00:1000693
    DOI: 10.1371/journal.pcbi.1000693
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000693
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000693&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.