Author
Listed:
- Anna Dvorkin
- Henry Szechtman
- Ilan Golani
Abstract
When introduced into a novel environment, mammals establish in it a preferred place marked by the highest number of visits and highest cumulative time spent in it. Examination of exploratory behavior in reference to this “home base” highlights important features of its organization. It might therefore be fruitful to search for other types of marked places in mouse exploratory behavior and examine their influence on overall behavior.Examination of path curvatures of mice exploring a large empty arena revealed the presence of circumscribed locales marked by the performance of tortuous paths full of twists and turns. We term these places knots, and the behavior performed in them—knot-scribbling. There is typically no more than one knot per session; it has distinct boundaries and it is maintained both within and across sessions. Knots are mostly situated in the place of introduction into the arena, here away from walls. Knots are not characterized by the features of a home base, except for a high speed during inbound and a low speed during outbound paths. The establishment of knots is enhanced by injecting the mouse with saline and placing it in an exposed portion of the arena, suggesting that stress and the arousal associated with it consolidate a long-term contingency between a particular locale and knot-scribbling.In an environment devoid of proximal cues mice mark a locale associated with arousal by twisting and turning in it. This creates a self-generated, often centrally located landmark. The tortuosity of the path traced during the behavior implies almost concurrent multiple views of the environment. Knot-scribbling could therefore function as a way to obtain an overview of the entire environment, allowing re-calibration of the mouse's locale map and compass directions. The rich vestibular input generated by scribbling could improve the interpretation of the visual scene.Author Summary: Exploration is a central component of human and animal behavior that has been studied in rodents for almost a century. It is presently one of the main models for studying the interface between behavior, genetics, drugs, and the brain. Until recently the exploration of an open field by rodents has been considered to be largely stochastic. Lately, this behavior is being gradually deciphered, revealing reference places called home bases, from which the animals perform roundtrips into the environment, tracing well-trodden paths whose features contribute to our understanding of navigation, locational memory, cognition-, and emotion-related behavior. Using advanced computational tools we discover so-called knots, preferred places visited sporadically by mice. Mice perform in these places twists and turns. The measurement of speed on the way in and out of knots reveals that they are attractive for the mice. Knot formation is enhanced by stress, suggesting that stress-related arousal assigns these locales with a special significance that is reinstated by subsequent visits to them. The twists and turns could provide the mouse with multiple views that turn knots into navigational landmarks as well as with rich vestibular input that might improve the perception and subsequent interpretation of the visual input.
Suggested Citation
Anna Dvorkin & Henry Szechtman & Ilan Golani, 2010.
"Knots: Attractive Places with High Path Tortuosity in Mouse Open Field Exploration,"
PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-12, January.
Handle:
RePEc:plo:pcbi00:1000638
DOI: 10.1371/journal.pcbi.1000638
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.