Author
Listed:
- Sean Ekins
- Sandhya Kortagere
- Manisha Iyer
- Erica J Reschly
- Markus A Lill
- Matthew R Redinbo
- Matthew D Krasowski
Abstract
Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5α-androstan-3β-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.Author Summary: Promiscuous proteins generally bind a large array of diverse ligand structures. This may be facilitated by a very large binding site, multiple binding sites, or a flexible binding site that can adjust to the size of the ligand. These aspects also increase the complexity of predicting whether a molecule will bind or not to such proteins which frequently function as exogenous compound sensors to respond to toxic stress. For example, transporters may prevent absorption of some molecules, and enzymes may convert them to more readily excretable compounds (or alternatively activate them prior to further clearance by other detoxification enzymes). Nuclear hormone receptors may respond to ligands and then affect downstream gene expression to upregulate both enzymes and transporters to increase the clearance for the same or different molecules. We have assessed the ability of many different ligand-based and structure-based computational approaches to model and predict the activation of human PXR by steroidal compounds. We find the most effective computational approach to identify potential steroidal PXR agonists which are clinically relevant due to their widespread use in clinical medicine and the presence of mimics in the environment.
Suggested Citation
Sean Ekins & Sandhya Kortagere & Manisha Iyer & Erica J Reschly & Markus A Lill & Matthew R Redinbo & Matthew D Krasowski, 2009.
"Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR,"
PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-12, December.
Handle:
RePEc:plo:pcbi00:1000594
DOI: 10.1371/journal.pcbi.1000594
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000594. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.