Author
Listed:
- Rui-Ru Ji
- Heshani de Silva
- Yisheng Jin
- Robert E Bruccoleri
- Jian Cao
- Aiqing He
- Wenjun Huang
- Paul S Kayne
- Isaac M Neuhaus
- Karl-Heinz Ott
- Becky Penhallow
- Mark I Cockett
- Michael G Neubauer
- Nathan O Siemers
- Petra Ross-Macdonald
Abstract
The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors (imatinib, nilotinib, dasatinib and PD0325901) across a six-logarithm dose range, using 12 arrays per compound. The transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other sources of quantitative data.Author Summary: Transcriptional profiling is arguably the most powerful hypothesis-free method for investigating biological effects of drugs—so why do the experiments typically use outmoded single-dose designs? Such single-dose experiments will co-mingle effects that can occur with different potency (e.g., effects on the known target versus effects on additional undesired targets). Single-dose experiments have little comparability to the dose-response bioassays, which are now used throughout the drug discovery processes. One reason for the disparity between experimental approaches is that existing analytical methods for dose-response bioassays can't cope with the dimensionality of microarray data: a typical bioassay is optimized for one response, then used to run a screen against thousands of compounds; whereas transcriptional profiling measures thousands of non-optimized responses to a single compound. Conversely, existing methods for microarray data analysis can identify patterns, but provide no quantitative dose-response information. To overcome these problems, we developed novel algorithms and visualization methods that allow anyone to apply transcriptional profiling as a conventional dose-response assay. The approach provides far more information than limited-dose designs, yet is economical (12 arrays/compound). With this new analytical framework, it is now possible to identify distinct transcriptional responses at distinct regions of the dose range, to link these impacts to biological pathways, and to make realistic connections to drug targets and to other bioassays.
Suggested Citation
Rui-Ru Ji & Heshani de Silva & Yisheng Jin & Robert E Bruccoleri & Jian Cao & Aiqing He & Wenjun Huang & Paul S Kayne & Isaac M Neuhaus & Karl-Heinz Ott & Becky Penhallow & Mark I Cockett & Michael G , 2009.
"Transcriptional Profiling of the Dose Response: A More Powerful Approach for Characterizing Drug Activities,"
PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-12, September.
Handle:
RePEc:plo:pcbi00:1000512
DOI: 10.1371/journal.pcbi.1000512
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.