IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000448.html
   My bibliography  Save this article

Cooperativity Dominates the Genomic Organization of p53-Response Elements: A Mechanistic View

Author

Listed:
  • Yongping Pan
  • Ruth Nussinov

Abstract

p53-response elements (p53-REs) are organized as two repeats of a palindromic DNA segment spaced by 0 to 20 base pairs (bp). Several experiments indicate that in the vast majority of the human p53-REs there are no spacers between the two repeats; those with spacers, particularly with sizes beyond two nucleotides, are rare. This raises the question of what it indicates about the factors determining the p53-RE genomic organization. Clearly, given the double helical DNA conformation, the orientation of two p53 core domain dimers with respect to each other will vary depending on the spacer size: a small spacer of 0 to 2 bps will lead to the closest p53 dimer-dimer orientation; a 10-bp spacer will locate the p53 dimers on the same DNA face but necessitate DNA looping; while a 5-bp spacer will position the p53 dimers on opposite DNA faces. Here, via conformational analysis we show that when there are 0–2 bp spacers, p53-DNA binding is cooperative; however, cooperativity is greatly diminished when there are spacers with sizes beyond 2 bp. Cooperative binding is broadly recognized to be crucial for biological processes, including transcriptional regulation. Our results clearly indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs, raising questions of the structural organization and functional roles of p53-REs with larger spacers. We further propose that a dynamic landscape scenario of p53 and p53-REs can better explain the selectivity of the degenerate p53-REs. Our conclusions bear on the evolutionary preference of the p53-RE organization and as such, are expected to have broad implications to other multimeric transcription factor response element organization.Author Summary: p53-response elements (p53-REs) are 20 base pair DNA segments embedded in the genome that are able to bind anti-tumor protein p53 and trigger biological functions such as DNA repair or self-destruction of the cell. These functions are modulated through selective binding of p53 to degenerate p53-REs. Understanding how the cells choose p53-REs for enacting a specific biological function is crucial for obtaining insight into cancer development. Experimental data indicate that the majority of p53-REs contain a small intervening spacer in the middle of their p53-REs. Here, we propose that there is a relationship between the organization of the p53-REs and binding cooperativity. To test this hypothesis, analysis of existing crystal structures and modeling of p53-DNA complexes was undertaken. The outcome shows that when there are 0–2 base pair spacers, there are more interactions between the p53 subunits, and the p53-DNA binding is cooperative. When the spacer sizes are larger, the interactions among p53 subunits are diminished. Our results indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs and suggest that different mechanisms of activation may be at play for those p53-REs with large spacers.

Suggested Citation

  • Yongping Pan & Ruth Nussinov, 2009. "Cooperativity Dominates the Genomic Organization of p53-Response Elements: A Mechanistic View," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-11, July.
  • Handle: RePEc:plo:pcbi00:1000448
    DOI: 10.1371/journal.pcbi.1000448
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000448
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000448&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.