IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000421.html
   My bibliography  Save this article

Maximum-Likelihood Model Averaging To Profile Clustering of Site Types across Discrete Linear Sequences

Author

Listed:
  • Zhang Zhang
  • Jeffrey P Townsend

Abstract

A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters, than did the existing empirical cumulative distribution function statistics.Author Summary: The invention and application of high-throughput technologies for DNA sequencing have resulted in an increasing abundance of biological sequence data. DNA or protein sequence data are naturally arranged as discrete linear sequences, and one of the fundamental challenges of analysis of sequence data is the description of how those sequences are arranged. Individual sites may be very sequentially heterogeneous or highly clustered into more homogeneous regions. However, progress in addressing this challenge has been hampered by a lack of suitable methods to accurately identify clustering of similar sites when there is no a priori specification of anticipated cluster size or count. Here, we present an algorithm that addresses this challenge, demonstrate its effectiveness with simulated data, and apply it to an example of genetic polymorphism data. Our algorithm requires no a priori knowledge and exhibits greater power than any other unsupervised algorithms. Furthermore, we apply model averaging methodology to overcome the natural and extensive uncertainty in cluster borders, facilitating estimation of a realistic profile of sequence heterogeneity and clustering. These profiles are of broad utility for computational analyses or visualizations of heterogeneity in discrete linear sequences, an enterprise of rapidly increasing importance given the diminishing costs of nucleic acid sequencing.

Suggested Citation

  • Zhang Zhang & Jeffrey P Townsend, 2009. "Maximum-Likelihood Model Averaging To Profile Clustering of Site Types across Discrete Linear Sequences," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-14, June.
  • Handle: RePEc:plo:pcbi00:1000421
    DOI: 10.1371/journal.pcbi.1000421
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000421
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000421&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl Schmid & Ziheng Yang, 2008. "The Trouble with Sliding Windows and the Selective Pressure in BRCA1," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh Samiran & Townsend Jeffrey P., 2015. "H-CLAP: hierarchical clustering within a linear array with an application in genetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 125-141, April.
    2. Yi-Fei Huang & G Brian Golding, 2014. "Phylogenetic Gaussian Process Model for the Inference of Functionally Important Regions in Protein Tertiary Structures," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh Samiran & Townsend Jeffrey P., 2015. "H-CLAP: hierarchical clustering within a linear array with an application in genetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 125-141, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.