Author
Listed:
- Yossi Yovel
- Mariana Laura Melcon
- Matthias O Franz
- Annette Denzinger
- Hans-Ulrich Schnitzler
Abstract
Echolocating bats use the echoes from their echolocation calls to perceive their surroundings. The ability to use these continuously emitted calls, whose main function is not communication, for recognition of individual conspecifics might facilitate many of the social behaviours observed in bats. Several studies of individual-specific information in echolocation calls found some evidence for its existence but did not quantify or explain it. We used a direct paradigm to show that greater mouse-eared bats (Myotis myotis) can easily discriminate between individuals based on their echolocation calls and that they can generalize their knowledge to discriminate new individuals that they were not trained to recognize. We conclude that, despite their high variability, broadband bat-echolocation calls contain individual-specific information that is sufficient for recognition. An analysis of the call spectra showed that formant-related features are suitable cues for individual recognition. As a model for the bat's decision strategy, we trained nonlinear statistical classifiers to reproduce the behaviour of the bats, namely to repeat correct and incorrect decisions of the bats. The comparison of the bats with the model strongly implies that the bats are using a prototype classification approach: they learn the average call characteristics of individuals and use them as a reference for classification. Author Summary: Animals must recognize each other in order to engage in social behaviour. Vocal communication signals could be helpful for recognizing individuals, especially in nocturnal organisms such as bats. Echolocating bats continuously emit special vocalizations, known as echolocation calls, and perceive their surroundings by analyzing the returning echoes. In this work we show that bats can use these vocalizations for the recognition of individuals, despite the fact that their main function is not communication. We used a statistical approach to analyze how the bats could do so. We created a computer model that reproduces the recognition behaviour of the bats. Our model suggests that the bats learn the average calls of other individuals and recognize individuals by comparing their calls with the learnt average representations.
Suggested Citation
Yossi Yovel & Mariana Laura Melcon & Matthias O Franz & Annette Denzinger & Hans-Ulrich Schnitzler, 2009.
"The Voice of Bats: How Greater Mouse-eared Bats Recognize Individuals Based on Their Echolocation Calls,"
PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-10, June.
Handle:
RePEc:plo:pcbi00:1000400
DOI: 10.1371/journal.pcbi.1000400
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000400. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.