IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000351.html
   My bibliography  Save this article

Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis

Author

Listed:
  • Gitanjali Yadav
  • Rajesh S Gokhale
  • Debasisa Mohanty

Abstract

Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.Author Summary: Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of therapeutically important natural products. These enzymes biosynthesize natural products with enormous diversity in chemical structures by combinatorial use of a limited number of catalytic domains. Therefore, deciphering the rules for relating the amino acid sequence of these domains to the chemical structure of the polyketide product remains a major challenge. We have carried out bioinformatics analysis of a large number of PKS clusters with known metabolic products to correlate the chemical structures of these metabolites to the sequence and structural features of the PKS proteins. The remarkable conservation observed in the PKS sequences across organisms, combined with unique structural features in their active sites and contact surfaces, allowed us to formulate a comprehensive set of predictive rules for deciphering metabolic products of uncharacterized PKS clusters. Our work thus represents a major milestone in natural product research, demonstrating the feasibility of discovering novel metabolites by in silico genome mining. These results also have interesting implications for rational design of novel natural products using a biosynthetic engineering approach.

Suggested Citation

  • Gitanjali Yadav & Rajesh S Gokhale & Debasisa Mohanty, 2009. "Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-14, April.
  • Handle: RePEc:plo:pcbi00:1000351
    DOI: 10.1371/journal.pcbi.1000351
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000351
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000351&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.