Author
Listed:
- Giulia Morra
- Gennady Verkhivker
- Giorgio Colombo
Abstract
Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes.Author Summary: Dynamic processes underlie the functions of all proteins. Hence, to understand, control, and design protein functions in the cell, we need to unravel the basic principles of protein dynamics. This is fundamental in studying the mechanisms of a specific class of proteins known as molecular chaperones, which oversee the correct conformational maturation of other proteins. In particular, molecular chaperones of the stress response machinery have become the focus of intense research, because their upregulation is responsible for the ability of tumor cells to cope with unfavorable environments. This is largely centered on the expression and function of the molecular chaperone Hsp90, which has provided an attractive target for therapeutic intervention in cancer. Experiments have shown that the chaperone functions through a nucleotide-directed conformational cycle. Here, we show that it is possible to identify the effects of nucleotide-related chemical differences on functionally relevant motions at the atomic level of resolution. The protein may fluctuate at equilibrium among different available dynamic states, and binding of a specific partner may shift the equilibrium toward the thermodynamically most stable complexes. These results provide us with important mechanistic insight for the identification of new regulatory sites and the design of possible new drugs.
Suggested Citation
Giulia Morra & Gennady Verkhivker & Giorgio Colombo, 2009.
"Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer,"
PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-16, March.
Handle:
RePEc:plo:pcbi00:1000323
DOI: 10.1371/journal.pcbi.1000323
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.