IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000318.html
   My bibliography  Save this article

Accurate Detection of Recombinant Breakpoints in Whole-Genome Alignments

Author

Listed:
  • Oscar Westesson
  • Ian Holmes

Abstract

We propose a novel method for detecting sites of molecular recombination in multiple alignments. Our approach is a compromise between previous extremes of computationally prohibitive but mathematically rigorous methods and imprecise heuristic methods. Using a combined algorithm for estimating tree structure and hidden Markov model parameters, our program detects changes in phylogenetic tree topology over a multiple sequence alignment. We evaluate our method on benchmark datasets from previous studies on two recombinant pathogens, Neisseria and HIV-1, as well as simulated data. We show that we are not only able to detect recombinant regions of vastly different sizes but also the location of breakpoints with great accuracy. We show that our method does well inferring recombination breakpoints while at the same time maintaining practicality for larger datasets. In all cases, we confirm the breakpoint predictions of previous studies, and in many cases we offer novel predictions.Author Summary: In viral and bacterial pathogens, recombination has the ability to combine fitness-enhancing mutations. Accurate characterization of recombinant breakpoints in newly sequenced strains can provide information about the role of this process in evolution, for example, in immune evasion. Of particular interest are situations of an admixture of pathogen subspecies, recombination between whose genomes may change the apparent phylogenetic tree topology in different regions of a multiple-genome alignment. We describe an algorithm that can pinpoint recombination breakpoints to greater accuracy than previous methods, allowing detection of both short recombinant regions and long-range multiple crossovers. The algorithm is appropriate for the analysis of fast-evolving pathogen sequences where repeated substitutions may be observed at a single site in a multiple alignment (violating the “infinite sites” assumption inherent to some other breakpoint-detection algorithms). Simulations demonstrate the practicality of our implementation for alignments of longer sequences and more taxa than previous methods.

Suggested Citation

  • Oscar Westesson & Ian Holmes, 2009. "Accurate Detection of Recombinant Breakpoints in Whole-Genome Alignments," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1000318
    DOI: 10.1371/journal.pcbi.1000318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000318
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kedzierska Anna & Husmeier Dirk, 2006. "A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-34, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Zhong & Menghan Zhang & Libing Sun & Yu Yang & Bo Wang & Haibing Yang & Qiang Shen & Yu Xia & Jiarui Cui & Hui Hang & Yi Ren & Bo Pang & Xiangyu Deng & Yahui Zhan & Heng Li & Zhemin Zhou, 2023. "Distributed genotyping and clustering of Neisseria strains reveal continual emergence of epidemic meningococcus over a century," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Kevin J Liu & Jingxuan Dai & Kathy Truong & Ying Song & Michael H Kohn & Luay Nakhleh, 2014. "An HMM-Based Comparative Genomic Framework for Detecting Introgression in Eukaryotes," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000318. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.