IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000298.html
   My bibliography  Save this article

Steady-State Kinetic Modeling Constrains Cellular Resting States and Dynamic Behavior

Author

Listed:
  • Jeremy E Purvis
  • Ravi Radhakrishnan
  • Scott L Diamond

Abstract

A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y1 signaling can cause widespread compensatory effects on cellular resting states.Author Summary: Cells respond to extracellular signals through a complex coordination of interacting molecular components. Computational models can serve as powerful tools for prediction and analysis of signaling systems, but constructing large models typically requires extensive experimental datasets and computation. To facilitate the construction of complex signaling models, we present a strategy in which the models are built in a stepwise fashion, beginning with small “resting” networks that are combined to form larger models with complex time-dependent behaviors. Interestingly, we found that only a minor fraction of potential model configurations were compatible with resting behavior in an example signaling system. These reduced sets of configurations were used to limit the search for more complicated solutions that also captured the dynamic behavior of the system. Using an example model constructed by this approach, we show how a cell's resting behavior adjusts to changes in the kinetic rate processes of the system. This strategy offers a general and biologically intuitive framework for building large-scale kinetic models of steady-state cellular systems and their dynamics.

Suggested Citation

  • Jeremy E Purvis & Ravi Radhakrishnan & Scott L Diamond, 2009. "Steady-State Kinetic Modeling Constrains Cellular Resting States and Dynamic Behavior," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1000298
    DOI: 10.1371/journal.pcbi.1000298
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000298
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000298&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Scheler, 2013. "Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.