Author
Abstract
The chemical-genetic profile can be defined as quantitative values of deletion strains' growth defects under exposure to chemicals. In yeast, the compendium of chemical-genetic profiles of genomewide deletion strains under many different chemicals has been used for identifying direct target proteins and a common mode-of-action of those chemicals. In the previous study, valuable biological information such as protein–protein and genetic interactions has not been fully utilized. In our study, we integrated this compendium and biological interactions into the comprehensive collection of ∼490 protein complexes of yeast for model-based prediction of a drug's target proteins and similar drugs. We assumed that those protein complexes (PCs) were functional units for yeast cell growth and regarded them as hidden factors and developed the PC-based Bayesian factor model that relates the chemical-genetic profile at the level of organism phenotypes to the hidden activities of PCs at the molecular level. The inferred PC activities provided the predictive power of a common mode-of-action of drugs as well as grouping of PCs with similar functions. In addition, our PC-based model allowed us to develop a new effective method to predict a drug's target pathway, by which we were able to highlight the target-protein, TOR1, of rapamycin. Our study is the first approach to model phenotypes of systematic deletion strains in terms of protein complexes. We believe that our PC-based approach can provide an appropriate framework for combining and modeling several types of chemical-genetic profiles including interspecies. Such efforts will contribute to predicting more precisely relevant pathways including target proteins that interact directly with bioactive compounds.Author Summary: Finding the specific targets of chemicals and deciphering how drugs work in our body is important for the effective development of new drugs. Growth profiles of yeast genomewide deletion strains under many different chemicals have been used for identifying target proteins and a common mode-of-action of drugs. In this study, we integrated those growth profiles with biological information such as protein–protein interactions and genetic interactions to develop a new method to infer the mode-of-action of drugs. We assume that the protein complexes (PCs) are functional units for cell growth regulation, analogous to the transcriptional factors (TFs) for gene regulation. We also assume that the relative cell growth of a specific deletion mutant in the presence of a specific drug is determined by the interactions between the PCs and the deleted gene of the mutant. We then developed a computational model with which we were able to infer the hidden activities of PCs on the cell growth and showed that yeast growth phenotypes could be effectively modeled by PCs in a biologically meaningful way by demonstrating that the inferred activities of PCs contributed to predicting groups of similar drugs as well as proteins and pathways targeted by drugs.
Suggested Citation
Sangjo Han & Dongsup Kim, 2008.
"Inference of Protein Complex Activities from Chemical-Genetic Profile and Its Applications: Predicting Drug-Target Pathways,"
PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-12, August.
Handle:
RePEc:plo:pcbi00:1000162
DOI: 10.1371/journal.pcbi.1000162
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.