Author
Listed:
- Austin Huang
- Collin M Stultz
Abstract
Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.Author Summary: Alzheimer's disease pathology is characterized by two types of protein aggregates that are found in the brain—amyloid plaques and neurofibrillary tangles. Several studies suggest that these aggregates also play an active role in the disease process. Thus, an understanding of disease pathogenesis may be facilitated by a detailed characterization of the proteins that comprise these aggregates. Our study aims to model structural characteristics of tau protein, which is found in neurofibrillary tangles. Modeling of tau is particularly difficult because the protein is intrinsically disordered and therefore must be modeled as an ensemble of structurally dissimilar states. We developed a novel modeling approach that incorporates experimental measurements to generate ensembles of conformations that model the unfolded state of tau. By analyzing structural properties in these model ensembles for both normal and disease-associated forms of the protein, we identify structural features that may facilitate tau aggregation.
Suggested Citation
Austin Huang & Collin M Stultz, 2008.
"The Effect of a ΔK280 Mutation on the Unfolded State of a Microtubule-Binding Repeat in Tau,"
PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-12, August.
Handle:
RePEc:plo:pcbi00:1000155
DOI: 10.1371/journal.pcbi.1000155
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.