IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000069.html
   My bibliography  Save this article

A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

Author

Listed:
  • Sean R Eddy

Abstract

Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments.Author Summary: Sequence database searches are a fundamental tool of molecular biology, enabling researchers to identify related sequences in other organisms, which often provides invaluable clues to the function and evolutionary history of genes. The power of database searches to detect more and more remote evolutionary relationships – essentially, to look back deeper in time – has improved steadily, with the adoption of more complex and realistic models. However, database searches require not just a realistic scoring model, but also the ability to distinguish good scores from bad ones – the ability to calculate the statistical significance of scores. For many models and scoring schemes, accurate statistical significance calculations have either involved expensive computational simulations, or not been feasible at all. Here, I introduce a probabilistic model of local sequence alignment that has readily predictable score statistics for position-specific profile scoring systems, and not just for traditional optimal alignment scores, but also for more powerful log-likelihood ratio scores derived in a full probabilistic inference framework. These results remove one of the main obstacles that have impeded the use of more powerful and biologically realistic statistical inference methods in sequence homology searches.

Suggested Citation

  • Sean R Eddy, 2008. "A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-14, May.
  • Handle: RePEc:plo:pcbi00:1000069
    DOI: 10.1371/journal.pcbi.1000069
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000069
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000069&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric P Nawrocki & Sean R Eddy, 2007. "Query-Dependent Banding (QDB) for Faster RNA Similarity Searches," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    2. Sean R Eddy, 2011. "Accelerated Profile HMM Searches," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    3. Angelina Beavogui & Auriane Lacroix & Nicolas Wiart & Julie Poulain & Tom O. Delmont & Lucas Paoli & Patrick Wincker & Pedro H. Oliveira, 2024. "The defensome of complex bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Wing-Cheong Wong & Sebastian Maurer-Stroh & Frank Eisenhaber, 2010. "More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    5. Friedrich Torben & Koetschan Christian & Müller Tobias, 2010. "Optimisation of HMM Topologies Enhances DNA and Protein Sequence Modelling," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert K Bradley & Ian Holmes, 2009. "Evolutionary Triplet Models of Structured RNA," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.