IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000019.html
   My bibliography  Save this article

Modeling the Effects of Cell Cycle M-phase Transcriptional Inhibition on Circadian Oscillation

Author

Listed:
  • Bin Kang
  • Yuan-Yuan Li
  • Xiao Chang
  • Lei Liu
  • Yi-Xue Li

Abstract

Circadian clocks are endogenous time-keeping systems that temporally organize biological processes. Gating of cell cycle events by a circadian clock is a universal observation that is currently considered a mechanism serving to protect DNA from diurnal exposure to ultraviolet radiation or other mutagens. In this study, we put forward another possibility: that such gating helps to insulate the circadian clock from perturbations induced by transcriptional inhibition during the M phase of the cell cycle. We introduced a periodic pulse of transcriptional inhibition into a previously published mammalian circadian model and simulated the behavior of the modified model under both constant darkness and light–dark cycle conditions. The simulation results under constant darkness indicated that periodic transcriptional inhibition could entrain/lock the circadian clock just as a light–dark cycle does. At equilibrium states, a transcriptional inhibition pulse of certain periods was always locked close to certain circadian phases where inhibition on Per and Bmal1 mRNA synthesis was most balanced. In a light–dark cycle condition, inhibitions imposed at different parts of a circadian period induced different degrees of perturbation to the circadian clock. When imposed at the middle- or late-night phase, the transcriptional inhibition cycle induced the least perturbations to the circadian clock. The late-night time window of least perturbation overlapped with the experimentally observed time window, where mitosis is most frequent. This supports our hypothesis that the circadian clock gates the cell cycle M phase to certain circadian phases to minimize perturbations induced by the latter. This study reveals the hidden effects of the cell division cycle on the circadian clock and, together with the current picture of genome stability maintenance by circadian gating of cell cycle, provides a more comprehensive understanding of the phenomenon of circading gating of cell cycle.Author Summary: Circadian clock and cell cycle are two important biological processes that are essential for nearly all eukaryotes. The circadian clock governs day and night 24 h periodic molecular processes and physiological behaviors, while cell cycle controls cell division process. It has been widely observed that cell division does not occur randomly across day and night, but instead is normally confined to specific times during day and night. These observations suggest that cell cycle events are gated by the circadian clock. Regarding the biological benefit and rationale for this intriguing gating phenomena, it has been postulated that circadian gating helps to maintain genome stability by confining radiation-sensitive cell cycle phases to night. Bearing in mind the facts that global transcriptional inhibition occurs at cell division and transcriptional inhibition shifts circadian phases and periods, we postulate that confining cell division to specific circadian times benefits the circadian clock by removing or minimizing the side effects of cell division on the circadian clock. Our results based on computational simulation in this study show that periodic transcriptional inhibition can perturb the circadian clock by altering circadian phases and periods, and the magnitude of the perturbation is clearly circadian phase dependent. Specifically, transcriptional inhibition initiated at certain circadian phases induced minimal perturbation to the circadian clock. These results provide support for our postulation. Our postulation and results point to the importance of the effect of cell division on the circadian clock in the interaction between circadian and cell cycle and suggest that it should be considered together with other factors in the exploitation of circadian cell cycle interaction, especially the phenomena of circadian gating of cell cycle.

Suggested Citation

  • Bin Kang & Yuan-Yuan Li & Xiao Chang & Lei Liu & Yi-Xue Li, 2008. "Modeling the Effects of Cell Cycle M-phase Transcriptional Inhibition on Circadian Oscillation," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-11, March.
  • Handle: RePEc:plo:pcbi00:1000019
    DOI: 10.1371/journal.pcbi.1000019
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000019
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000019&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.