IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030167.html
   My bibliography  Save this article

Functional Representation of Enzymes by Specific Peptides

Author

Listed:
  • Vered Kunik
  • Yasmine Meroz
  • Zach Solan
  • Ben Sandbank
  • Uri Weingart
  • Eytan Ruppin
  • David Horn

Abstract

Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX) to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC). The resulting motifs serve as specific peptides (SPs), appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 ± 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes.: Sequence motifs are known to provide information about functional properties of proteins. In the past, many approaches have looked for deterministic motifs in protein sequences, by searching for functionally over-represented k-mers, with moderate levels of success. Here we revisit and renew the utility of deterministic motifs, by searching for them in a partially unsupervised and context-dependent manner. Using a novel motif extraction algorithm, MEX, deterministic sequence motifs are extracted from Swiss Prot data containing more than 50,000 enzymes. They are then filtered by the Enzyme Commission classification hierarchy to produce sets of specific peptides (SPs). The latter specify enzyme function for 93% of the data, comparing well with existing approaches for enzyme classification. Importantly, SPs are found to have biological significance. A majority of all known active and binding sites of enzymes are covered by SPs, and many SPs are found to lie within spatial pockets in the neighborhood of the active sites. Both these results have extremely high statistical significance. A user-friendly tool that displays the hits of SPs for any protein sequence that is presented as a query, together with the EC assignments due to these SPs, is available at http://adios.tau.ac.il/SPSearch.

Suggested Citation

  • Vered Kunik & Yasmine Meroz & Zach Solan & Ben Sandbank & Uri Weingart & Eytan Ruppin & David Horn, 2007. "Functional Representation of Enzymes by Specific Peptides," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-10, August.
  • Handle: RePEc:plo:pcbi00:0030167
    DOI: 10.1371/journal.pcbi.0030167
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030167
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030167&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.