Author
Listed:
- Robert S Kuczenski
- Kevin C Hong
- Jordi García-Ojalvo
- Kelvin H Lee
Abstract
In this study we present a detailed, mechanism-based mathematical framework of Drosophila circadian rhythms. This framework facilitates a more systematic approach to understanding circadian rhythms using a comprehensive representation of the network underlying this phenomenon. The possible mechanisms underlying the cytoplasmic “interval timer” created by PERIOD–TIMELESS association are investigated, suggesting a novel positive feedback regulatory structure. Incorporation of this additional feedback into a full circadian model produced results that are consistent with previous experimental observations of wild-type protein profiles and numerous mutant phenotypes.: The ability of an organism to adapt to daily changes in the environment, via a circadian clock, is an inherently interesting phenomenon recently connected to several human health issues. Decades of experiments on one of the smallest model animals, the fruit fly Drosophila, has illustrated significant similarities with the mammal circadian system. Within Drosophila, the PERIOD and TIMELESS proteins are central to controlling this rhythmicity and were recently shown to have a rapid and stable association creating an “interval” timer in the cell's cytoplasm. This interval timer creates the necessary delay between the expression and activity of these genes, and is directly opposed to the previous hypothesis of a delay created by slow association. We use several mathematical models to investigate the unknown factors controlling this timer. Using a novel positive feedback loop, we construct a circadian model consistent with the interval timer and many wild-type and mutant experimental observations. Our results suggest several novel genes and interactions to be tested experimentally.
Suggested Citation
Robert S Kuczenski & Kevin C Hong & Jordi García-Ojalvo & Kelvin H Lee, 2007.
"PERIOD–TIMELESS Interval Timer May Require an Additional Feedback Loop,"
PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-9, August.
Handle:
RePEc:plo:pcbi00:0030154
DOI: 10.1371/journal.pcbi.0030154
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030154. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.