IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030076.html
   My bibliography  Save this article

Patterns of Mesenchymal Condensation in a Multiscale, Discrete Stochastic Model

Author

Listed:
  • Scott Christley
  • Mark S Alber
  • Stuart A Newman

Abstract

Cells of the embryonic vertebrate limb in high-density culture undergo chondrogenic pattern formation, which results in the production of regularly spaced “islands” of cartilage similar to the cartilage primordia of the developing limb skeleton. The first step in this process, in vitro and in vivo, is the generation of “cell condensations,” in which the precartilage cells become more tightly packed at the sites at which cartilage will form. In this paper we describe a discrete, stochastic model for the behavior of limb bud precartilage mesenchymal cells in vitro. The model uses a biologically motivated reaction–diffusion process and cell-matrix adhesion (haptotaxis) as the bases of chondrogenic pattern formation, whereby the biochemically distinct condensing cells, as well as the size, number, and arrangement of the multicellular condensations, are generated in a self-organizing fashion. Improving on an earlier lattice-gas representation of the same process, it is multiscale (i.e., cell and molecular dynamics occur on distinct scales), and the cells are represented as spatially extended objects that can change their shape. The authors calibrate the model using experimental data and study sensitivity to changes in key parameters. The simulations have disclosed two distinct dynamic regimes for pattern self-organization involving transient or stationary inductive patterns of morphogens. The authors discuss these modes of pattern formation in relation to available experimental evidence for the in vitro system, as well as their implications for understanding limb skeletal patterning during embryonic development. Author Summary: The development of an organism from embryo to adult includes processes of pattern formation that involve the interactions over space and time of independent cells to form multicellular structures. Computational models permit exploration of possible alternative mechanisms that reproduce biological patterns and thereby provide hypotheses for empirical testing. In this article, we describe a biologically motivated discrete stochastic model that shows that the patterns of spots and stripes of tightly packed cells observed in cultures derived from the embryonic vertebrate limb can occur by a mechanism that uses only cell–cell signaling via diffusible molecules (morphogens) and cell substratum adhesion (haptotaxis). Moreover, similar-looking patterns can arise both from stable stationary dynamics and unstable transient dynamics of the same underlying core molecular–genetic mechanism. Simulations also show that spot and stripe patterns (which also correspond to the nodules and bars of the developing limb skeleton in vivo) are close in parameter space and can be generated in multiple ways with single-parameter variations. An important implication is that some developmental processes do not require a strict progression from one stable dynamic regime to another, but can occur by a succession of transient dynamic regimes tuned (e.g., by natural selection) to achieve a particular morphological outcome.

Suggested Citation

  • Scott Christley & Mark S Alber & Stuart A Newman, 2007. "Patterns of Mesenchymal Condensation in a Multiscale, Discrete Stochastic Model," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-11, April.
  • Handle: RePEc:plo:pcbi00:0030076
    DOI: 10.1371/journal.pcbi.0030076
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030076
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030076&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.