Author
Listed:
- Rachel Karchin
- Alvaro N A Monteiro
- Sean V Tavtigian
- Marcelo A Carvalho
- Andrej Sali
Abstract
Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1 protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive. Computational methods that classify and suggest explanations for UCV impact on protein function can complement functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1 C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54 documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than 94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied to prioritize the growing number of potential causative loci and variants found by large-scale disease association studies.: A significant number of breast and ovarian cancers are due to inherited mutations in the BRCA1 and BRCA2 genes. Many women who receive genetic testing for these mutations are found to have variants of the genes that result in changed amino acids in the BRCA1 or BRCA2 proteins. The effect of these variants on cancer risk is not well-understood, posing a problem for patients and their health providers. We describe computational biology methods that predict and analyze the impact of 36 BRCA1 variants on protein function. The predictions are validated by biochemical assays of BRCA1 in yeast and mammalian cell cultures. The speed and accuracy of the computational methods is well-suited to rapid evaluation of large numbers of variants in genes that predispose to inherited diseases.
Suggested Citation
Rachel Karchin & Alvaro N A Monteiro & Sean V Tavtigian & Marcelo A Carvalho & Andrej Sali, 2007.
"Functional Impact of Missense Variants in BRCA1 Predicted by Supervised Learning,"
PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-14, February.
Handle:
RePEc:plo:pcbi00:0030026
DOI: 10.1371/journal.pcbi.0030026
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030026. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.