IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020176.html
   My bibliography  Save this article

DARPP-32 Is a Robust Integrator of Dopamine and Glutamate Signals

Author

Listed:
  • Éric Fernandez
  • Renaud Schiappa
  • Jean-Antoine Girault
  • Nicolas Le Novère

Abstract

Integration of neurotransmitter and neuromodulator signals in the striatum plays a central role in the functions and dysfunctions of the basal ganglia. DARPP-32 is a key actor of this integration in the GABAergic medium-size spiny neurons, in particular in response to dopamine and glutamate. When phosphorylated by cAMP-dependent protein kinase (PKA), DARPP-32 inhibits protein phosphatase-1 (PP1), whereas when phosphorylated by cyclin-dependent kinase 5 (CDK5) it inhibits PKA. DARPP-32 is also regulated by casein kinases and by several protein phosphatases. These complex and intricate regulations make simple predictions of DARPP-32 dynamic behaviour virtually impossible. We used detailed quantitative modelling of the regulation of DARPP-32 phosphorylation to improve our understanding of its function. The models included all the combinations of the three best-characterized phosphorylation sites of DARPP-32, their regulation by kinases and phosphatases, and the regulation of those enzymes by cAMP and Ca2+ signals. Dynamic simulations allowed us to observe the temporal relationships between cAMP and Ca2+ signals. We confirmed that the proposed regulation of protein phosphatase-2A (PP2A) by calcium can account for the observed decrease of Threonine 75 phosphorylation upon glutamate receptor activation. DARPP-32 is not simply a switch between PP1-inhibiting and PKA-inhibiting states. Sensitivity analysis showed that CDK5 activity is a major regulator of the response, as previously suggested. Conversely, the strength of the regulation of PP2A by PKA or by calcium had little effect on the PP1-inhibiting function of DARPP-32 in these conditions. The simulations showed that DARPP-32 is not only a robust signal integrator, but that its response also depends on the delay between cAMP and calcium signals affecting the response to the latter. This integration did not depend on the concentration of DARPP-32, while the absolute effect on PP1 varied linearly. In silico mutants showed that Ser137 phosphorylation affects the influence of the delay between dopamine and glutamate, and that constitutive phosphorylation in Ser137 transforms DARPP-32 in a quasi-irreversible switch. This work is a first attempt to better understand the complex interactions between cAMP and Ca2+ regulation of DARPP-32. Progressive inclusion of additional components should lead to a realistic model of signalling networks underlying the function of striatal neurons.Synopsis: Projecting neurons of the striatum are a crucial relay of the basal ganglia, involved in motor, psychomotor, and behavioural functions. Their importance is emphasised by their involvement in various dysfunctions, such as Huntington chorea and schizophrenia, but also drug addiction. The main inputs to those neurons come from cortical glutamatergic terminals. Dopamine modulates this transmission, providing a measure of the internal (hedonic) state. In mammal brain, DARPP-32, a protein phosphatase inhibitor, has been identified as a major target for both dopamine and glutamate signalling. The authors present a detailed quantitative model of the regulation of DARPP-32 phosphorylation and dephosphorylation by both signals. Dynamic simulations show that the function of DARPP-32 depends on the delay between the two signals, and therefore the protein not only measures the intensity, but also the coincidence, between signals. This measurement is insensitive to many parameters, whether kinetic constants or concentrations, making it a robust integrator. This shows that a proper understanding of signal integration in the basal ganglia requires quantitative descriptions of the signalling pathways in addition to the neuronal electrophysiological properties.

Suggested Citation

  • Éric Fernandez & Renaud Schiappa & Jean-Antoine Girault & Nicolas Le Novère, 2006. "DARPP-32 Is a Robust Integrator of Dopamine and Glutamate Signals," PLOS Computational Biology, Public Library of Science, vol. 2(12), pages 1-15, December.
  • Handle: RePEc:plo:pcbi00:0020176
    DOI: 10.1371/journal.pcbi.0020176
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020176
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020176&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.