Author
Listed:
- Sean P Stromberg
- Jean Carlson
Abstract
We construct a model to study tradeoffs associated with aging in the adaptive immune system, focusing on cumulative effects of replacing naive cells with memory cells. Binding affinities are characterized by a stochastic shape space model. System loss arising from an individual infection is associated with disease severity, as measured by the total antigen population over the course of an infection. We monitor evolution of cell populations on the shape space over a string of infections, and find that the distribution of losses becomes increasingly heavy-tailed with time. Initially this lowers the average loss: the memory cell population becomes tuned to the history of past exposures, reducing the loss of the system when subjected to a second, similar infection. This is accompanied by a corresponding increase in vulnerability to novel infections, which ultimately causes the expected loss to increase due to overspecialization, leading to increasing fragility with age (i.e., immunosenescence). In our model, immunosenescence is not the result of a performance degradation of some specific lymphocyte, but rather a natural consequence of the built-in mechanisms for system adaptation. This “robust, yet fragile” behavior is a key signature of Highly Optimized Tolerance.Synopsis: The immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. This paper describes a model that captures this adaptation and corresponding robust, yet fragile behavior. To model immunological processes that rely on binding specificity, researchers typically utilize abstract shape space models. These models describe the binding characteristics of a receptor or antigen as points in a high dimensional vector space. Stromberg and Carlson have incorporated the concept of shape space into a dynamical model of immune response. They use this model to examine the development of the system over a series of infections and monitor the severity of disease for each infection. The diseases are drawn at random from a distribution having a few frequently reoccurring and many rare. The system is observed to adapt over a series of infections, becoming robust to the frequent diseases while developing fragility to the rare diseases. This age-correlated weakness arises from the underlying dynamics of system adaptation rather than from an accumulation of defects. This robust, yet fragile behavior is a signature of Highly Optimized Tolerance, a mechanism for complexity based on robustness tradeoffs.
Suggested Citation
Sean P Stromberg & Jean Carlson, 2006.
"Robustness and Fragility in Immunosenescence,"
PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-7, November.
Handle:
RePEc:plo:pcbi00:0020160
DOI: 10.1371/journal.pcbi.0020160
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020160. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.