IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020129.html
   My bibliography  Save this article

Simulating Properties of In Vitro Epithelial Cell Morphogenesis

Author

Listed:
  • Mark R Grant
  • Keith E Mostov
  • Thea D Tlsty
  • C Anthony Hunt

Abstract

How do individual epithelial cells (ECs) organize into multicellular structures? ECs are studied in vitro to help answer that question. Characteristic growth features include stable cyst formation in embedded culture, inverted cyst formation in suspension culture, and lumen formation in overlay culture. Formation of these characteristic structures is believed to be a consequence of an intrinsic program of differentiation and de-differentiation. To help discover how such a program may function, we developed an in silico analogue in which space, events, and time are discretized. Software agents and objects represent cells and components of the environment. “Cells” act independently. The “program” governing their behavior is embedded within each in the form of axioms and an inflexible decisional process. Relationships between the axioms and recognized cell functions are specified. Interactions between “cells” and environment components during simulation give rise to a complex in silico phenotype characterized by context-dependent structures that mimic counterparts observed in four different in vitro culture conditions: a targeted set of in vitro phenotypic attributes was matched by in silico attributes. However, for a particular growth condition, the analogue failed to exhibit behaviors characteristic of functionally polarized ECs. We solved this problem by following an iterative refinement method that improved the first analogue and led to a second: it exhibited characteristic differentiation and growth properties in all simulated growth conditions. It is the first model to simultaneously provide a representation of nonpolarized and structurally polarized cell types, and a mechanism for their interconversion. The second analogue also uses an inflexible axiomatic program. When specific axioms are relaxed, growths strikingly characteristic of cancerous and precancerous lesions are observed. In one case, the simulated cause is aberrant matrix production. Analogue design facilitates gaining deeper insight into such phenomena by making it easy to replace low-resolution components with increasingly detailed and realistic components.Synopsis: To gain new insights into how normal and abnormal epithelial cell (EC) morphogenesis occurs, Grant and colleagues designed, built, and studied a series of discrete event analogues capable of mimicking epithelial growth characteristics in four different culture conditions. The analogues use independent software agents and objects to represent cells and the two environment components. “Cells” interact with local components using an axiomatic decisional process deduced from experimental in vitro observations. During simulations, “cells” form stable structures that mimic counterparts in cell cultures: a set of targeted in vitro phenotypic attributes is matched by the analogue's phenotype. However, the foundational analogue failed to exhibit a behavior characteristic of functionally polarized ECs in stable structures. Iterative refinement solved the problem: the improved analogue is the first model to simultaneously provide a representation of nonpolarized and structurally polarized cell types, and a mechanism for their interconversion. Inflexible axiom application is essential to simulate normal attributes. Selectively changing an axiom or relaxing its application caused growths strikingly characteristic of cancerous and precancerous lesions. Gaining deeper insight into such phenomena can be achieved by replacing low-resolution components with increasingly detailed and realistic components.

Suggested Citation

  • Mark R Grant & Keith E Mostov & Thea D Tlsty & C Anthony Hunt, 2006. "Simulating Properties of In Vitro Epithelial Cell Morphogenesis," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-17, October.
  • Handle: RePEc:plo:pcbi00:0020129
    DOI: 10.1371/journal.pcbi.0020129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020129
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.