Author
Listed:
- Claire McQuin
- Allen Goodman
- Vasiliy Chernyshev
- Lee Kamentsky
- Beth A Cimini
- Kyle W Karhohs
- Minh Doan
- Liya Ding
- Susanne M Rafelski
- Derek Thirstrup
- Winfried Wiegraebe
- Shantanu Singh
- Tim Becker
- Juan C Caicedo
- Anne E Carpenter
Abstract
CellProfiler has enabled the scientific research community to create flexible, modular image analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new version of the software supporting both whole-volume and plane-wise analysis of three-dimensional (3D) image stacks, increasingly common in biomedical research. CellProfiler’s infrastructure is greatly improved, and we provide a protocol for cloud-based, large-scale image processing. New plugins enable running pretrained deep learning models on images. Designed by and for biologists, CellProfiler equips researchers with powerful computational tools via a well-documented user interface, empowering biologists in all fields to create quantitative, reproducible image analysis workflows.Author summary: The “big-data revolution” has struck biology: it is now common for robots to prepare cell samples and take thousands of microscopy images. Looking at the resulting images by eye would be extremely tedious, not to mention subjective. Thus, many biologists find they need software to analyze images easily and accurately. The third major release of our free open-source software CellProfiler is designed to help biologists working with images, whether a few or thousands. Researchers can download an online example workflow (that is, a “pipeline”) or create their own from scratch. Pipelines are easy to save, reuse, and share, helping improve scientific reproducibility. In this release, we’ve added the capability to find and measure objects in three-dimensional (3D) images. We’ve also made changes to CellProfiler’s underlying code to make it faster to run and easier to install, and we’ve added the ability to process images in the cloud and using neural networks (deep learning). We’ve also added more explanations to CellProfiler’s settings to help new users get started. We hope these changes will make CellProfiler an even better tool for current users and will provide new users better ways to get started doing quantitative image analysis.
Suggested Citation
Claire McQuin & Allen Goodman & Vasiliy Chernyshev & Lee Kamentsky & Beth A Cimini & Kyle W Karhohs & Minh Doan & Liya Ding & Susanne M Rafelski & Derek Thirstrup & Winfried Wiegraebe & Shantanu Singh, 2018.
"CellProfiler 3.0: Next-generation image processing for biology,"
PLOS Biology, Public Library of Science, vol. 16(7), pages 1-17, July.
Handle:
RePEc:plo:pbio00:2005970
DOI: 10.1371/journal.pbio.2005970
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2005970. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.