IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1002127.html
   My bibliography  Save this article

Colour As a Signal for Entraining the Mammalian Circadian Clock

Author

Listed:
  • Lauren Walmsley
  • Lydia Hanna
  • Josh Mouland
  • Franck Martial
  • Alexander West
  • Andrew R Smedley
  • David A Bechtold
  • Ann R Webb
  • Robert J Lucas
  • Timothy M Brown

Abstract

Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.Environmental measurements and physiological recordings reveal that mice not only use changes in the intensity of sunlight to entrain their circadian clock, but also employ blue–yellow color discrimination to detect spectral changes associated with dawn and dusk.Author Summary: Animals use an internal brain clock to keep track of time and adjust their behaviour in anticipation of the coming day or night. To be useful, however, this clock must be synchronised to external time. Assessing external time is typically thought to rely on measuring large changes in ambient light intensity that occur over dawn/dusk. The colour of light also changes over these twilight transitions, but it is currently unknown whether such changes in colour are important for synchronising biological clocks to the solar cycle. Here we show that the mammalian blue–yellow colour discrimination axis provides a more reliable indication of twilight progression than a system solely measuring changes in light intensity. We go on to use electrical recordings from the brain clock to reveal the presence of many neurons that can track changes in blue–yellow colour occurring during natural twilight. Finally, using mice housed under lighting regimes with simulated dawn/dusk transitions, we show that changes in colour are required for appropriate biological timing with respect to the solar cycle. In sum, our data reveal a new sensory mechanism for estimating time of day that should be available to all mammals capable of chromatic vision, including humans.

Suggested Citation

  • Lauren Walmsley & Lydia Hanna & Josh Mouland & Franck Martial & Alexander West & Andrew R Smedley & David A Bechtold & Ann R Webb & Robert J Lucas & Timothy M Brown, 2015. "Colour As a Signal for Entraining the Mammalian Circadian Clock," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-20, April.
  • Handle: RePEc:plo:pbio00:1002127
    DOI: 10.1371/journal.pbio.1002127
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002127
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002127&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1002127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maja Grubisic & Abraham Haim & Pramod Bhusal & Davide M. Dominoni & Katharina M. A. Gabriel & Andreas Jechow & Franziska Kupprat & Amit Lerner & Paul Marchant & William Riley & Katarina Stebelova & Ro, 2019. "Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates," Sustainability, MDPI, vol. 11(22), pages 1-51, November.
    2. Scharf, Yael, 2017. "A chaotic outlook on biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 42-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1002127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.