Author
Listed:
- Jessica F Cantlon
- Rosa Li
Abstract
Neural activity that is evoked naturalistically in children during educational television viewing can be used to predict math and verbal knowledge. It is not currently possible to measure the real-world thought process that a child has while observing an actual school lesson. However, if it could be done, children's neural processes would presumably be predictive of what they know. Such neural measures would shed new light on children's real-world thought. Toward that goal, this study examines neural processes that are evoked naturalistically, during educational television viewing. Children and adults all watched the same Sesame Street video during functional magnetic resonance imaging (fMRI). Whole-brain intersubject correlations between the neural timeseries from each child and a group of adults were used to derive maps of “neural maturity” for children. Neural maturity in the intraparietal sulcus (IPS), a region with a known role in basic numerical cognition, predicted children's formal mathematics abilities. In contrast, neural maturity in Broca's area correlated with children's verbal abilities, consistent with prior language research. Our data show that children's neural responses while watching complex real-world stimuli predict their cognitive abilities in a content-specific manner. This more ecologically natural paradigm, combined with the novel measure of “neural maturity,” provides a new method for studying real-world mathematics development in the brain. Author Summary: In the real world, children learn new information by participating in classrooms, interacting with their family and friends, and watching educational videos. While previous neuroimaging research has typically used simple tasks and short-lasting stimuli, in this study we examined brain development using a more complex and naturalistic educational stimulus. Children and adults all watched the same Sesame Street video as we measured their neural activity using functional magnetic resonance imaging (fMRI). We examined the timecourses of neural activity over the length of the video for children and adults. We found that the degree to which children showed adult-like brain responses was correlated with their math and verbal knowledge levels. In the intraparietal sulcus, children's neural correlation with adults depended on their mathematics knowledge whereas in Broca's area, it depended on their verbal knowledge. Additional experiments showed that children's neural responses in the intraparietal sulcus are selectively driven by numerical content both when children are watching Sesame Street and when they engage in a number matching task. These convergent results highlight the broad role of the intraparietal sulcus in processing numerical information. In addition, our study validates the use of naturalistic stimuli and child-to-adult neural timecourse correlations for studying brain development. We suggest that this new approach can enrich our understanding of how children's brains process information in the real world.
Suggested Citation
Jessica F Cantlon & Rosa Li, 2013.
"Neural Activity during Natural Viewing of Sesame Street Statistically Predicts Test Scores in Early Childhood,"
PLOS Biology, Public Library of Science, vol. 11(1), pages 1-13, January.
Handle:
RePEc:plo:pbio00:1001462
DOI: 10.1371/journal.pbio.1001462
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1001462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.