Author
Listed:
- Daniel L Rabosky
- Graham J Slater
- Michael E Alfaro
Abstract
Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms. Author Summary: Species richness varies by many orders of magnitude across the evolutionary "tree of life." Some groups, like beetles and flowering plants, contain nearly incomprehensible species diversity, but the overwhelming majority of groups contain far fewer species. Many processes presumably contribute to this variation in diversity, but the most general explanatory variable is the evolutionary age of each group: older groups will simply have had more time for diversity to accumulate than younger groups. We tested whether evolutionary age explains differences in species richness by compiling diversity and age estimates for nearly 1,400 groups of multicellular organisms. Surprisingly, we find no evidence that old groups have more species than young groups. This result appears to hold across the entire tree of life, for taxa as diverse as ferns, fungi, and flies. We demonstrate that this pattern is highly unlikely under simple but widely used evolutionary models that allow diversity to increase through time without bounds. Paleontologists have long contended that diversity-dependent processes have regulated species richness through time, and our results suggest that such processes have left a footprint on the living biota that can even be seen without data from the fossil record.
Suggested Citation
Daniel L Rabosky & Graham J Slater & Michael E Alfaro, 2012.
"Clade Age and Species Richness Are Decoupled Across the Eukaryotic Tree of Life,"
PLOS Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
Handle:
RePEc:plo:pbio00:1001381
DOI: 10.1371/journal.pbio.1001381
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1001381. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.