IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/0050138.html
   My bibliography  Save this article

Mental Training Affects Distribution of Limited Brain Resources

Author

Listed:
  • Heleen A Slagter
  • Antoine Lutz
  • Lawrence L Greischar
  • Andrew D Francis
  • Sander Nieuwenhuis
  • James M Davis
  • Richard J Davidson

Abstract

The information processing capacity of the human mind is limited, as is evidenced by the so-called “attentional-blink” deficit: When two targets (T1 and T2) embedded in a rapid stream of events are presented in close temporal proximity, the second target is often not seen. This deficit is believed to result from competition between the two targets for limited attentional resources. Here we show, using performance in an attentional-blink task and scalp-recorded brain potentials, that meditation, or mental training, affects the distribution of limited brain resources. Three months of intensive mental training resulted in a smaller attentional blink and reduced brain-resource allocation to the first target, as reflected by a smaller T1-elicited P3b, a brain-potential index of resource allocation. Furthermore, those individuals that showed the largest decrease in brain-resource allocation to T1 generally showed the greatest reduction in attentional-blink size. These observations provide novel support for the view that the ability to accurately identify T2 depends upon the efficient deployment of resources to T1. The results also demonstrate that mental training can result in increased control over the distribution of limited brain resources. Our study supports the idea that plasticity in brain and mental function exists throughout life and illustrates the usefulness of systematic mental training in the study of the human mind. : Meditation includes the mental training of attention, which involves the selection of goal-relevant information from the array of inputs that bombard our sensory systems. One of the major limitations of the attentional system concerns the ability to process two temporally close, task-relevant stimuli. When the second of two target stimuli is presented within a half second of the first one in a rapid sequence of events, it is often not detected. This so-called “attentional-blink” deficit is thought to result from competition between stimuli for limited attentional resources. We measured the effects of intense meditation on performance and scalp-recorded brain potentials in an attentional-blink task. We found that three months of intensive meditation reduced brain-resource allocation to the first target, enabling practitioners to more often detect the second target with no compromise in their ability to detect the first target. These findings demonstrate that meditative training can improve performance on a novel task that requires the trained attentional abilities. Intensive training in Vipassana meditation enhances one's ability to allocate attention efficiently in order to detect visual targets accurately. Behavioral and event-related potential evidence for a causal link between behavioral training and brain plasticity in adults is shown.

Suggested Citation

  • Heleen A Slagter & Antoine Lutz & Lawrence L Greischar & Andrew D Francis & Sander Nieuwenhuis & James M Davis & Richard J Davidson, 2007. "Mental Training Affects Distribution of Limited Brain Resources," PLOS Biology, Public Library of Science, vol. 5(6), pages 1-8, May.
  • Handle: RePEc:plo:pbio00:0050138
    DOI: 10.1371/journal.pbio.0050138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050138
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0050138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.0050138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:0050138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.