IDEAS home Printed from https://ideas.repec.org/a/pes/ieroec/v10y2019i1p131-151.html
   My bibliography  Save this article

Spatial weight matrix impact on real estate hierarchical clustering in the process of mass valuation

Author

Listed:
  • Sebastian Gnat

    (University of Szczecin, Poland)

Abstract

Research background: The value of the property can be determined on an individual or mass basis. There are a number of situations in which uniform and relatively fast results obtained by means of mass valuation undoubtedly outweigh the advantages of the individual approach. In literature and practice there are a number of different types of models of mass valuation of real estate. For some of them it is postulated or required to group the valued properties into homogeneous subset due to various criteria. One such model is Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA). When using this algorithm, the area to be valued should be divided into the so-called location attractiveness areas (LAZ). Such division can be made in many ways. Regardless of the method of clustering, its result should be assessed, depending on the degree of implementation of the adopted criterion of division quality. A better division of real estate will translate into more accurate valuation results. Purpose of the article: The aim of the article is to present an application of hierarchical clustering with a spatial constraints algorithm for the creation of LAZ. This method requires the specification of spatial weight matrix to carry out the clustering process. Due to the fact that such a matrix can be specified in a number of ways, the impact of the proposed types of matrices on the clustering process will be described. A modified measure of information entropy will be used to assess the clustering results. Methods: The article utilises the algorithm of agglomerative clustering, which takes into account spatial constraints, which is particularly important in the context of real estate valuation. Homogeneity of clusters will be determined with the means of information entropy. Findings & Value added: The main achievements of the study will be to assess whether the type of the distance matrix has a significant impact on the clustering of properties under valuation.

Suggested Citation

  • Sebastian Gnat, 2019. "Spatial weight matrix impact on real estate hierarchical clustering in the process of mass valuation," Oeconomia Copernicana, Institute of Economic Research, vol. 10(1), pages 131-151, March.
  • Handle: RePEc:pes:ieroec:v:10:y:2019:i:1:p:131-151
    DOI: 10.24136/oc.2019.007
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24136/oc.2019.007
    Download Restriction: no

    File URL: https://libkey.io/10.24136/oc.2019.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.

    More about this item

    Keywords

    agglomerative clustering; entropy; property mass appraisal; market analysis;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pes:ieroec:v:10:y:2019:i:1:p:131-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam P. Balcerzak (email available below). General contact details of provider: https://edirc.repec.org/data/ibgtopl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.