Author
Abstract
The increasing capacities of large language models (LLMs) have been shown to present an unprecedented opportunity to scale up data analytics in the humanities and social sciences, by automating complex qualitative tasks otherwise typically carried out by human researchers. While numerous benchmarking studies have assessed the analytic prowess of LLMs, there is less focus on operationalizing this capacity for inference and hypothesis testing. Addressing this challenge, a systematic framework is argued for here, building on mixed methods quantitizing and converting design principles, and feature analysis from linguistics, to transparently integrate human expertise and machine scalability. Replicability and statistical robustness are discussed, including how to incorporate machine annotator error rates in subsequent inference. The approach is discussed and demonstrated in over a dozen LLM-assisted case studies, covering nine diverse languages, multiple disciplines and tasks, including analysis of themes, stances, ideas, and genre compositions; linguistic and semantic annotation, interviews, text mining and event cause inference in noisy historical data, literary social network construction, metadata imputation, and multimodal visual cultural analytics. Using hypothesis-driven topic classification instead of “distant reading” is discussed. The replications among the experiments also illustrate how tasks previously requiring protracted team effort or complex computational pipelines can now be accomplished by an LLM-assisted scholar in a fraction of the time. Importantly, the approach is not intended to replace, but to augment and scale researcher expertise and analytic practices. With these opportunities in sight, qualitative skills and the ability to pose insightful questions have arguably never been more critical.
Suggested Citation
Andres Karjus, 2025.
"Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence,"
Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-18, December.
Handle:
RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04503-w
DOI: 10.1057/s41599-025-04503-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04503-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.