IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03311-y.html
   My bibliography  Save this article

Navigating the digital divide: unraveling the impact of ICT usage and supply on SO2 emissions in China’s Yangtze River Delta

Author

Listed:
  • Umair Kashif

    (Jiangsu University)

  • Junguo Shi

    (Jiangsu University)

  • Sihan Li

    (Harbin Engineering University)

  • Qinqin Wu

    (Jiangsu University)

  • Qiuya Song

    (Northeastern University)

  • Shanshan Dou

    (Wuxi Taihu University)

  • Mengjie Wei

    (Jiangsu University)

  • Snovia Naseem

    (Jiangsu University)

Abstract

The relationship between information and communication technology (ICT) and environmental pollution is widely recognized and complex. To better understand the environmental impact of ICT, we divide it into two facets: the supply side and the usage side. This study investigates the impact of ICT usage and ICT supply on sulfur dioxide (SO2) emissions using random effect and spatial Durbin model in China Yangtze River Delta from 2011 to 2019. The findings reveal an inverted U-shape relationship between ICT usage and SO2 emission, while the supply of ICT has a significant negative impact on SO2 emissions. Furthermore, the spillover effect of ICT usage shows insignificant outcomes, but the supply of ICT has a significant and negative impact on SO2 emissions. Collectively, these findings provide fresh insights and empirical evidence into the effects of ICT usage and ICT supply on SO2 emissions, bearing significant policy implications for promoting ICT to attain sustainable development goals.

Suggested Citation

  • Umair Kashif & Junguo Shi & Sihan Li & Qinqin Wu & Qiuya Song & Shanshan Dou & Mengjie Wei & Snovia Naseem, 2024. "Navigating the digital divide: unraveling the impact of ICT usage and supply on SO2 emissions in China’s Yangtze River Delta," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03311-y
    DOI: 10.1057/s41599-024-03311-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03311-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03311-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    2. Umair Kashif & Junguo Shi & Snovia Naseem & Shanshan Dou & Zohaib Zahid, 2024. "ICT service exports and CO2 emissions in OECD countries: the moderating effect of regulatory quality," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-17, June.
    3. Abu Risha, Omar & Wang, Qingshi & Dou, Shanshan & Alhussam, Mohammed Ismail & Shi, Junguo, 2022. "The Impact of Government Assistance to State-owned Enterprises on Foreign Start-ups: Evidence from Yangtze River Delta," East Asian Economic Review, Korea Institute for International Economic Policy, vol. 26(3), pages 205-225, September.
    4. Qianqian Wan & Daqian Shi, 2022. "Smarter and Cleaner: The Digital Economy and Environmental Pollution," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(6), pages 59-85, November.
    5. Anil Markandya & Alexander Golub & Suzette Pedroso-Galinato, 2006. "Empirical Analysis of National Income and SO 2 Emissions in Selected European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 35(3), pages 221-257, November.
    6. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    7. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    8. Luo, Kang & Liu, Yaobin & Chen, Pei-Fen & Zeng, Mingli, 2022. "Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt," Energy Economics, Elsevier, vol. 112(C).
    9. Elsadig Musa Ahmed, 2017. "Erratum to: ICT and Human Capital Spillover Effects in Achieving Sustainable East Asian Knowledge-Based Economies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 1113-1113, September.
    10. Shi, Junguo & Liu, Yang & Sadowski, Bert M. & Alemzero, David & Dou, Shanshan & Sun, Huaping & Naseem, Sobia, 2023. "The role of economic growth and governance on mineral rents in main critical minerals countries," Resources Policy, Elsevier, vol. 83(C).
    11. Carlsson, Bo, 2004. "The Digital Economy: what is new and what is not?," Structural Change and Economic Dynamics, Elsevier, vol. 15(3), pages 245-264, September.
    12. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    13. Purva Khera & Stephanie Ng & Sumiko Ogawa & Ratna Sahay, 2022. "Measuring Digital Financial Inclusion in Emerging Market and Developing Economies: A New Index," Asian Economic Policy Review, Japan Center for Economic Research, vol. 17(2), pages 213-230, July.
    14. Elsadig Musa Ahmed, 2017. "ICT and Human Capital Spillover Effects in Achieving Sustainable East Asian Knowledge-Based Economies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 1086-1112, September.
    15. Siying Yang & Wenxuan Sun & Zhouyi Wu & Yang He, 2022. "Can the SO2 emission trading system promote urban emission reduction?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(4), pages 963-974, June.
    16. Sun, Yunpeng & Razzaq, Asif & Sun, Huaping & Irfan, Muhammad, 2022. "The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model," Renewable Energy, Elsevier, vol. 193(C), pages 334-343.
    17. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    18. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    19. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Huang, Junbing & Wang, Yajun & Luan, Bingjiang & Zou, Hong & Wang, Jun, 2023. "The energy intensity reduction effect of developing digital economy: Theory and empirical evidence from China," Energy Economics, Elsevier, vol. 128(C).
    3. Dong, Kangyin & Liu, Yang & Wang, Jianda & Dong, Xiucheng, 2024. "Is the digital economy an effective tool for decreasing energy vulnerability? A global case," Ecological Economics, Elsevier, vol. 216(C).
    4. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    5. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    6. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    7. Wang, Weilong & Yang, Xiaodong & Cao, Jianhong & Bu, Wenchao & Dagestani, Abd Alwahed & Adebayo, Tomiwa Sunday & Dilanchiev, Azer & Ren, Siyu, 2022. "Energy internet, digital economy, and green economic growth: Evidence from China," Innovation and Green Development, Elsevier, vol. 1(2).
    8. Maksim Vlasov & Sergey N. Polbitsyn & Michael Olumekor & Hossam Haddad & Nidal M. Al-Ramahi, 2024. "Socio-Cultural Factors and Components of the Digital Economy in Ethnic Minority Regions," Sustainability, MDPI, vol. 16(9), pages 1-14, May.
    9. Wenjing Zhang & Bin Sun & Zaijun Li & Suleman Sarwar, 2023. "The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    10. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    11. Wang, Zongrun & Cao, Xuxin & Ren, Xiaohang & Taghizadeh-Hesary, Farhad, 2024. "Can digital transformation affect coal utilization efficiency in China? Evidence from spatial econometric analyses," Resources Policy, Elsevier, vol. 91(C).
    12. Lin, Boqiang & Wang, Chonghao, 2024. "Does industrial relocation affect green total factor energy efficiency? Evidence from China's high energy-consuming industries," Energy, Elsevier, vol. 289(C).
    13. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    14. Fengyu Zhao & Ziqing Xu & Xiaowen Xie, 2024. "Exploring the Role of Digital Economy in Enhanced Green Productivity in China’s Manufacturing Sector: Fresh Evidence for Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    15. Yang, Senmiao & Wang, Jianda & Dong, Kangyin & Jiang, Qingzhe, 2023. "A path towards China's energy justice: How does digital technology innovation bring about a just revolution?," Energy Economics, Elsevier, vol. 127(PA).
    16. Xiaoying Lei & Yifei Ma & Jinkai Ke & Caihong Zhang, 2023. "The Non-Linear Impact of the Digital Economy on Carbon Emissions Based on a Mediated Effects Model," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    17. Dian, Jie & Song, Tian & Li, Shenglan, 2024. "Facilitating or inhibiting? Spatial effects of the digital economy affecting urban green technology innovation," Energy Economics, Elsevier, vol. 129(C).
    18. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    19. Congqi Wang & Rui Zhang & Haslindar Ibrahim & Pengzhen Liu, 2023. "Can the Digital Economy Enable Carbon Emission Reduction: Analysis of Mechanisms and China’s Experience," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    20. Youngho Kang & Byung-Yeon Kim, 2018. "Immigration and economic growth: do origin and destination matter?," Applied Economics, Taylor & Francis Journals, vol. 50(46), pages 4968-4984, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03311-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.