IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i6p841-852.html
   My bibliography  Save this article

A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating

Author

Listed:
  • Ming Liu

    (Nanjing University of Science and Technology, Nanjing, P.R. China)

  • Ding Zhang

    (Nanjing University of Science and Technology, Nanjing, P.R. China
    State University of New York, Oswego, USA)

Abstract

This paper presents a dynamic logistics model for medical resources allocation that can be used to control an epidemic diffusion. It couples a forecasting mechanism, constructed for the demand of a medicine in the course of such epidemic diffusion, and a logistics planning system to satisfy the forecasted demand and minimize the total cost. The forecasting mechanism is a time discretized version of the Susceptible-Exposed-Infected-Recovered model that is widely employed in predicting the trajectory of an epidemic diffusion. The logistics planning system is formulated as a mixed 0–1 integer programming problem characterizing the decision making at various levels of hospitals, distribution centers, pharmaceutical plants, and the transportation in between them. The model is built as a closed-loop cycle, comprising forecast phase, planning phase, execution phase, and adjustment phase. The parameters of the forecast mechanism are adjusted in reflection of the real data collected in the execution phase by solving a quadratic programming problem. A numerical example is presented to verify efficiency of the model.

Suggested Citation

  • Ming Liu & Ding Zhang, 2016. "A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(6), pages 841-852, June.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:6:p:841-852
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n6/pdf/jors2015105a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n6/full/jors2015105a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yikai Liu & Ruozheng Wu & Aimin Yang, 2023. "Research on Medical Problems Based on Mathematical Models," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    2. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    3. Sayarshad, Hamid R., 2023. "Interventions in demand and supply sides for vaccine supply chain: An analysis on monkeypox vaccine," Operations Research Perspectives, Elsevier, vol. 11(C).
    4. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    5. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    6. Fabián Silva-Aravena & Irlanda Ceballos-Fuentealba & Eduardo Álvarez-Miranda, 2020. "Inventory Management at a Chilean Hospital Pharmacy: Case Study of a Dynamic Decision-Aid Tool," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    7. Aarti Singh & Ratri Parida, 2022. "Decision-Making Models for Healthcare Supply Chain Disruptions: Review and Insights for Post-pandemic Era," International Journal of Global Business and Competitiveness, Springer, vol. 17(2), pages 130-141, December.
    8. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    9. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Lane, David & Husemann, Elke & Holland, Darren & Khaled, Abdul, 2019. "Understanding foodborne transmission mechanisms for Norovirus: A study for the UK's Food Standards Agency," European Journal of Operational Research, Elsevier, vol. 275(2), pages 721-736.
    11. Kar, Biswajit & Jenamani, Mamata, 2024. "Optimal multimodal multi-echelon vaccine distribution network design for low and medium-income countries with manufacturing infrastructure during healthcare emergencies," International Journal of Production Economics, Elsevier, vol. 273(C).
    12. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    13. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    14. Shengjie Long & Dezhi Zhang & Shuangyan Li & Shuanglin Li, 2023. "Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    15. Salarpour, Mojtaba & Nagurney, Anna, 2021. "A multicountry, multicommodity stochastic game theory network model of competition for medical supplies inspired by the Covid-19 pandemic," International Journal of Production Economics, Elsevier, vol. 236(C).
    16. Liu, Ming & Zhang, Zhe & Zhang, Ding, 2017. "Logistics planning for hospital pharmacy trusteeship under a hybrid of uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 201-215.
    17. Chen, Sihua & Qiu, Han & Wen, Xiang & Wang, Bolin & He, Wei & Shao, Xiuyan, 2024. "Does information disclosure alleviate overcrowding? An empirical study based on large-scale COVID-19 nucleic acid test," Journal of Business Research, Elsevier, vol. 171(C).
    18. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    19. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    20. Hao Yu & Xu Sun & Wei Deng Solvang & Xu Zhao, 2020. "Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)," IJERPH, MDPI, vol. 17(5), pages 1-25, March.
    21. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:6:p:841-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.