IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i5p743-751.html
   My bibliography  Save this article

Solving the vehicle routing problem with lunch break arising in the furniture delivery industry

Author

Listed:
  • Leandro C Coelho

    (CIRRELT and Université Laval, Québec, Canada)

  • Jean-Philippe Gagliardi

    (CIRRELT and Université Laval, Québec, Canada)

  • Jacques Renaud

    (CIRRELT and Université Laval, Québec, Canada)

  • Angel Ruiz

    (CIRRELT and Université Laval, Québec, Canada)

Abstract

In this paper, we solve the Vehicle Routing Problem with Lunch Break (VRPLB), which arises when drivers must take pauses during their shift, for example, for lunch breaks. Driver breaks have already been considered in long haul transportation when drivers must rest during their travel, but the underlying optimization problem remains difficult and few contributions can be found for less than truckload and last mile distribution contexts. This problem, which appears in the furniture delivery industry, includes rich features such as time windows and heterogeneous vehicles. In this paper, we evaluate the performance of a new mathematical formulation for the VRPLB and of a fast and high performing heuristic. The mixed integer linear programming formulation has the disadvantage of roughly doubling the number of nodes, and thus significantly increasing the size of the distance matrix and the number of variables. Consequently, standard branch-and-bound algorithms are only capable of solving small-sized instances. In order to tackle large instances provided by an industrial partner, we propose a fast multi-start randomized local search heuristic tailored for the VRPLB, which is shown to be very efficient. Through a series of computational experiments, we show that solving the VRPLB without explicitly considering the pauses during the optimization process can lead to a number of infeasibilities. These results demonstrate the importance of integrating drivers pauses in the resolution process.

Suggested Citation

  • Leandro C Coelho & Jean-Philippe Gagliardi & Jacques Renaud & Angel Ruiz, 2016. "Solving the vehicle routing problem with lunch break arising in the furniture delivery industry," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 743-751, May.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:5:p:743-751
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n5/pdf/jors201590a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n5/full/jors201590a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    2. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    3. Fangzhou Yan & Huaxin Qiu & Dongya Han, 2023. "Lagrangian Heuristic for Multi-Depot Technician Planning of Product Distribution and Installation with a Lunch Break," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    4. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Ali, Ousmane & Côté, Jean-François & Coelho, Leandro C., 2021. "Models and algorithms for the delivery and installation routing problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 162-177.
    6. Ostermeier, Manuel, 2024. "The supply of convenience stores: Challenges of short-distance routing within the constraints of working time regulations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 997-1012.
    7. Goel, Asvin, 2018. "Legal aspects in road transport optimization in Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 144-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:5:p:743-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.