IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i5p735-742.html
   My bibliography  Save this article

A robust support vector regression with a linear-log concave loss function

Author

Listed:
  • Dohyun Kim

    (Myongji University, Yongin, Korea)

  • Chungmok Lee

    (Hankuk University of Foreign Studies, Yongin, Korea)

  • Sangheum Hwang

    (Korea Advanced Institute of Science and Technology, Daejeon, Korea)

  • Myong K Jeong

    (Rutgers, the State University of New Jersey, Piscataway, USA)

Abstract

Support vector regression (SVR) is one of the most popular nonlinear regression techniques with the aim to approximate a nonlinear system with a good generalization capability. However, SVR has a major drawback in that it is sensitive to the presence of outliers. The ramp loss function for robust SVR has been introduced to resolve this problem, but SVR with ramp loss function has a non-differentiable and non-convex formulation, which is not easy to solve. Consequently, SVR with the ramp loss function requires smoothing and Concave-Convex Procedure techniques, which transform the non-differentiable and non-convex optimization to a differentiable and convex one. We present a robust SVR with linear-log concave loss function (RSLL), which does not require the transformation technique, where the linear-log concave loss function has a similar effect as the ramp loss function. The zero norm approximation and the difference of convex functions problem are employed for solving the optimization problem. The proposed RSLL approach is used to develop a robust and stable virtual metrology (VM) prediction model, which utilizes the status variables of process equipment to predict the process quality of wafer level in semiconductor manufacturing. We also compare the proposed approach to existing SVR-based methods in terms of the root mean squared error of prediction using both synthetic and real data sets. Our experimental results show that the proposed approach performs better than existing SVR-based methods regardless of the data set and type of outliers (ie, X-space and Y-space outliers), implying that it can be used as a useful alternative when the regression data contain outliers.

Suggested Citation

  • Dohyun Kim & Chungmok Lee & Sangheum Hwang & Myong K Jeong, 2016. "A robust support vector regression with a linear-log concave loss function," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 735-742, May.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:5:p:735-742
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n5/pdf/jors201532a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v67/n5/full/jors201532a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:5:p:735-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.