IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v66y2015i10p1656-1668.html
   My bibliography  Save this article

When to rebuild or when to adjust scorecards

Author

Listed:
  • Ki Mun Jung

    (Kyungsung University, Busan, South Korea)

  • Lyn C Thomas

    (University of Southampton, Southampton, United Kingdom)

  • Mee Chi So

    (University of Southampton, Southampton, United Kingdom)

Abstract

Data-based scorecards, such as those used in credit scoring, age with time and need to be rebuilt or readjusted. Unlike the huge literature on modelling the replacement and maintenance of equipment there have been hardly any models that deal with this problem for scorecards. This paper identifies an effective way of describing the predictive ability of the scorecard and from this describes a simple model for how its predictive ability will develop. Using a dynamic programming approach one is then able to find when it is optimal to rebuild and when to readjust a scorecard. Failing to readjust or rebuild a scorecard when they aged was one of the defects in credit scoring identified in the investigations into the sub-prime mortgage crisis.

Suggested Citation

  • Ki Mun Jung & Lyn C Thomas & Mee Chi So, 2015. "When to rebuild or when to adjust scorecards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1656-1668, October.
  • Handle: RePEc:pal:jorsoc:v:66:y:2015:i:10:p:1656-1668
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n10/pdf/jors201543a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n10/full/jors201543a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyi Wang & Xing Yan & Bangqi Zheng & Hu Wang & Wangli Xu & Nanbo Peng & Qi Wu, 2021. "Risk and return prediction for pricing portfolios of non-performing consumer credit," Papers 2110.15102, arXiv.org.
    2. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:66:y:2015:i:10:p:1656-1668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.