IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i7p1010-1020.html
   My bibliography  Save this article

A hybrid simulated annealing and column generation approach for capacitated multicommodity network design

Author

Listed:
  • M Yaghini

    (Iran University of Science and Technology, Tehran, Iran)

  • M Rahbar

    (Iran University of Science and Technology, Tehran, Iran)

  • M Karimi

    (Iran University of Science and Technology, Tehran, Iran)

Abstract

This paper presents a hybrid simulated annealing (SA) and column generation (CG) algorithm for the path-based formulation of the capacitated multicommodity network design (PCMND) problem. In the proposed method, the SA metaheuristic algorithm manages open and closed arcs. Several strategies for adding and dropping arcs are suggested and evaluated. For a given design vector in the proposed hybrid approach, the PCMND problem becomes a capacitated multicommodity minimum cost flow (CMCF) problem. The exact evaluation of the CMCF problem is performed using the CG algorithm. The parameter tuning is done by means of design of experiments approach. The performance of the proposed algorithm is evaluated by solving several benchmark instances. The results of the proposed algorithm are compared with the solutions of CPLEX solver and the best-known method in the literature under different time limits. Statistical analysis proves that the proposed algorithm is able to obtain better solutions.

Suggested Citation

  • M Yaghini & M Rahbar & M Karimi, 2013. "A hybrid simulated annealing and column generation approach for capacitated multicommodity network design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 1010-1020, July.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:7:p:1010-1020
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n7/pdf/jors2012114a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n7/full/jors2012114a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    2. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:7:p:1010-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.