IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i4p622-628.html
   My bibliography  Save this article

On the weighting of the mean-absolute-deviation cost minimization model

Author

Listed:
  • S Wang

    (National University of Singapore, Singapore)

  • Q Meng

    (National University of Singapore, Singapore)

  • Z Liu

    (National University of Singapore, Singapore)

Abstract

The mean-absolute-deviation cost minimization model, which aims to minimize sum of the mean value and the absolute deviation (AD) of the total cost multiplied by a given non-negative weighting, is one of a number of typical robust optimization models. This paper first uses a straightforward example to show that the solution obtained by this model with some weightings is not actually an optimal decision. This example also illustrates that the mean-absolute-deviation cost minimization model cannot be regarded as the conventional weighted transformation of the relevant multiobjective minimization model aiming to simultaneously minimize the mean value and AD. This paper further proves that the optimal solution obtained by the mean-absolute-deviation cost minimization model with the weighting not exceeding 0.5 will not be absolutely dominated by any other solution. This tight upper bound provides a useful guideline for practical applications.

Suggested Citation

  • S Wang & Q Meng & Z Liu, 2013. "On the weighting of the mean-absolute-deviation cost minimization model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(4), pages 622-628, April.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:4:p:622-628
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n4/pdf/jors201273a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n4/full/jors201273a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Felix & Pauwels, Laurent, 2019. "Equivalence of optimal forecast combinations under affine constraints," Working Papers BAWP-2019-02, University of Sydney Business School, Discipline of Business Analytics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:4:p:622-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.