IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i4p513-529.html
   My bibliography  Save this article

Using semi-supervised classifiers for credit scoring

Author

Listed:
  • K Kennedy

    (Applied Intelligence Research Centre, Dublin Institute of Technology, Kevin St., Ireland)

  • B Mac Namee

    (Applied Intelligence Research Centre, Dublin Institute of Technology, Kevin St., Ireland)

  • S J Delany

    (Applied Intelligence Research Centre, Dublin Institute of Technology, Kevin St., Ireland)

Abstract

In credit scoring, low-default portfolios (LDPs) are those for which very little default history exists. This makes it problematic for financial institutions to estimate a reliable probability of a customer defaulting on a loan. Banking regulation (Basel II Capital Accord), and best practice, however, necessitate an accurate and valid estimate of the probability of default. In this article the suitability of semi-supervised one-class classification (OCC) algorithms as a solution to the LDP problem is evaluated. The performance of OCC algorithms is compared with the performance of supervised two-class classification algorithms. This study also investigates the suitability of over sampling, which is a common approach to dealing with LDPs. Assessment of the performance of one- and two-class classification algorithms using nine real-world banking data sets, which have been modified to replicate LDPs, is provided. Our results demonstrate that only in the near or complete absence of defaulters should semi-supervised OCC algorithms be used instead of supervised two-class classification algorithms. Furthermore, we demonstrate for data sets whose class labels are unevenly distributed that optimising the threshold value on classifier output yields, in many cases, an improvement in classification performance. Finally, our results suggest that oversampling produces no overall improvement to the best performing two-class classification algorithms.

Suggested Citation

  • K Kennedy & B Mac Namee & S J Delany, 2013. "Using semi-supervised classifiers for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(4), pages 513-529, April.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:4:p:513-529
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n4/pdf/jors201130a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n4/full/jors201130a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    2. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    3. Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:4:p:513-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.