IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i11p1664-1675.html
   My bibliography  Save this article

A mixture experiments multi-objective hyper-heuristic

Author

Listed:
  • J A Vázquez-Rodríguez

    (University of Nottingham, Nottinghamshire, UK)

  • S Petrovic

    (University of Nottingham, Nottinghamshire, UK)

Abstract

This paper proposes a hyper-heuristic that combines genetic algorithm with mixture experiments to solve multi-objective optimisation problems. At every iteration, the proposed algorithm combines the selection criterion (rank indicator) of a number of well-established evolutionary algorithms including NSGA-II, SPEA2 and two versions of IBEA. Each indicator is called according to an associated probability calculated and updated during the search by means of mixture experiments. Mixture experiments are a particular type of experimental design suitable for the calibration of parameters that represent probabilities. Their main output is an explanatory model of algorithm performance as a function of its parameters. By finding the maximum (probability distribution) of the surface represented by this model, we also find a good algorithm parameterisation. The design of mixture experiments approach allowed the authors to identify and exploit synergies between the different rank indicators at the different stages of the search. This is demonstrated by our experimental results in which the proposed algorithm compared favourably against other well-established algorithms.

Suggested Citation

  • J A Vázquez-Rodríguez & S Petrovic, 2013. "A mixture experiments multi-objective hyper-heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1664-1675, November.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:11:p:1664-1675
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n11/pdf/jors2012125a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n11/full/jors2012125a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:11:p:1664-1675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.