IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i11p1607-1613.html
   My bibliography  Save this article

Robust balancing of straight assembly lines with interval task times☆

Author

Listed:
  • E Gurevsky

    (201;cole Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France)

  • Ö Hazır

    (201;cole Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France)

  • O Battaïa

    (201;cole Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France)

  • A Dolgui

    (201;cole Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France)

Abstract

This paper addresses the balancing problem for straight assembly lines where task times are not known exactly but given by intervals of their possible values. The objective is to assign the tasks to workstations minimizing the number of workstations while respecting precedence and cycle-time constraints. An adaptable robust optimization model is proposed to hedge against the worst-case scenario for task times. To find the optimal solution(s), a breadth-first search procedure is developed and evaluated on benchmark instances. The results obtained are analysed and some practical recommendations are given.

Suggested Citation

  • E Gurevsky & Ö Hazır & O Battaïa & A Dolgui, 2013. "Robust balancing of straight assembly lines with interval task times☆," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1607-1613, November.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:11:p:1607-1613
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n11/pdf/jors2012139a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n11/full/jors2012139a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pirogov, Aleksandr & Gurevsky, Evgeny & Rossi, André & Dolgui, Alexandre, 2021. "Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions," European Journal of Operational Research, Elsevier, vol. 290(3), pages 946-955.
    2. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    3. Shibasaki, Rui S. & Rossi, André & Gurevsky, Evgeny, 2024. "A new upper bound based on Dantzig-Wolfe decomposition to maximize the stability radius of a simple assembly line under uncertainty," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1015-1030.
    4. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    5. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    6. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    7. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    8. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:11:p:1607-1613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.