IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v63y2012i9p1248-1257.html
   My bibliography  Save this article

A heuristic approach to classifying labeled/unlabeled data sets

Author

Listed:
  • K Y Huang

    (Ling Tung University, Taichung City, Taiwan)

Abstract

A classification method, which comprises Fuzzy C-Means method, a modified form of the Huang-index function and Variable Precision Rough Set (VPRS) theory, is proposed for classifying labeled/unlabeled data sets in this study. This proposed method, designated as the MVPRS-index method, is used to partition the values of per conditional attribute within the data set and to achieve both the optimal number of clusters and the optimal accuracy of VPRS classification. The validity of the proposed approach is confirmed by comparing the classification results obtained from the MVPRS-index method for UCI data sets and a typical stock market data set with those obtained from the supervised neural networks classification method. Overall, the results show that the MVPRS-index method could be applied to data sets not only with labeled information but also with unlabeled information, and therefore provides a more reliable basis for the extraction of decision-making rules of labeled/unlabeled datasets.

Suggested Citation

  • K Y Huang, 2012. "A heuristic approach to classifying labeled/unlabeled data sets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1248-1257, September.
  • Handle: RePEc:pal:jorsoc:v:63:y:2012:i:9:p:1248-1257
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n9/pdf/jors2011103a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n9/full/jors2011103a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:9:p:1248-1257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.