IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v63y2012i8p1165-1173.html
   My bibliography  Save this article

Comparing reinforcement learning approaches for solving game theoretic models: a dynamic airline pricing game example

Author

Listed:
  • A Collins

    (Old Dominion University, Virginia, USA)

  • L Thomas

    (University of Southampton, Southampton, UK)

Abstract

Games can be easy to construct but difficult to solve due to current methods available for finding the Nash Equilibrium. This issue is one of many that face modern game theorists and those analysts that need to model situations with multiple decision-makers. This paper explores the use of reinforcement learning, a standard artificial intelligence technique, as a means to solve a simple dynamic airline pricing game. Three different reinforcement learning approaches are compared: SARSA, Q-learning and Monte Carlo Learning. The pricing game solution is surprisingly sophisticated given the game's simplicity and this sophistication is reflected in the learning results. The paper also discusses extra analytical benefit obtained from applying reinforcement learning to these types of problems.

Suggested Citation

  • A Collins & L Thomas, 2012. "Comparing reinforcement learning approaches for solving game theoretic models: a dynamic airline pricing game example," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1165-1173, August.
  • Handle: RePEc:pal:jorsoc:v:63:y:2012:i:8:p:1165-1173
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n8/pdf/jors201194a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n8/full/jors201194a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loureiro, Sandra Maria Correia & Guerreiro, João & Tussyadiah, Iis, 2021. "Artificial intelligence in business: State of the art and future research agenda," Journal of Business Research, Elsevier, vol. 129(C), pages 911-926.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:8:p:1165-1173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.