IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v63y2012i4p524-529.html
   My bibliography  Save this article

Complexity of scheduling of coupled tasks with chains precedence constraints and any constant length of gap

Author

Listed:
  • K Ecker

    (1] University of Technology, Clausthal, Germany[2] Ohio University Athens, Ohio, USA)

  • M Tanaś

    (Adam Mickiewicz University, Poznań, Poland)

Abstract

Coupled tasks scheduling was originally introduced for modelling complex radar devices. It is still used for controlling such devices and applied in similar applications. This paper considers a problem of coupled tasks scheduling on one processor, under the assumptions that all processing times are equal to 1, the gap has a constant exact length and the precedence constraints are strict. Although it is proven that the problem stated above is NP-hard in the strong sense if the precedence constraints have a form of a general graph, it is possible to solve some of its relaxed versions in polynomial time. This paper contains a solution for the problem of coupled tasks scheduling with an assumption that the precedence constraints graph has a form of chains and it presents an algorithm that can solve the problem with such assumption in time O(n log n).

Suggested Citation

  • K Ecker & M Tanaś, 2012. "Complexity of scheduling of coupled tasks with chains precedence constraints and any constant length of gap," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(4), pages 524-529, April.
  • Handle: RePEc:pal:jorsoc:v:63:y:2012:i:4:p:524-529
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n4/pdf/jors201132a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n4/full/jors201132a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:4:p:524-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.