IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v63y2012i3p392-405.html
   My bibliography  Save this article

An empirical study of hyperheuristics for managing very large sets of low level heuristics

Author

Listed:
  • S Remde

    (University of Bradford, Bradford, UK)

  • P Cowling

    (University of Bradford, Bradford, UK)

  • K Dahal

    (University of Bradford, Bradford, UK)

  • N Colledge

    (University of Bradford, Bradford, UK)

  • E Selensky

    (Trimble MRM Ltd. (EMEA), Ipswich, UK)

Abstract

Hyperheuristics give us the appealing possibility of abstracting the solution method from the problem, since our hyperheuristic, at each decision point, chooses between different low level heuristics rather than different solutions as is usually the case for metaheuristics. By assembling low level heuristics from parameterised components we may create hundreds or thousands of low level heuristics, and there is increasing evidence that this is effective in dealing with every eventuality that may arise when solving different combinatorial optimisation problem instances since at each iteration the solution landscape is amenable to at least one of the low level heuristics. However, the large number of low level heuristics means that the hyperheuristic has to intelligently select the correct low level heuristic to use, to make best use of available CPU time. This paper empirically investigates several hyperheuristics designed for large collections of low level heuristics and adapts other hyperheuristics from the literature to cope with these large sets of low level heuristics on a difficult real-world workforce scheduling problem. In the process we empirically investigate a wide range of approaches for setting tabu tenure in hyperheuristic methods, for a complex real-world problem. The results show that the hyperheuristic methods described provide a good way to trade off CPU time and solution quality.

Suggested Citation

  • S Remde & P Cowling & K Dahal & N Colledge & E Selensky, 2012. "An empirical study of hyperheuristics for managing very large sets of low level heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 392-405, March.
  • Handle: RePEc:pal:jorsoc:v:63:y:2012:i:3:p:392-405
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n3/pdf/jors201148a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n3/full/jors201148a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:3:p:392-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.