IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i6d10.1057_jors.2008.187.html
   My bibliography  Save this article

Optimal placement, scheduling, and routing to maximize lifetime in sensor networks

Author

Listed:
  • Y B Türkoğulları

    (Boğaziçi University)

  • N Aras

    (Boğaziçi University)

  • İ K Altınel

    (Boğaziçi University)

  • C Ersoy

    (Boğaziçi University)

Abstract

A wireless sensor network is a network consisting of distributed autonomous electronic devices called sensors. Sensors have limited energy and capability for sensing, data processing, and communicating, but they can collectively behave to provide an effective network that monitors an area and transmit information to gateway nodes or sinks, either directly or through other sensor nodes. In most applications the network must operate for long periods of time, so the available energy resources of the sensors must be managed efficiently. In this paper, we first develop a mixed integer linear programming model to maximize network lifetime by optimally determining locations of sensors and sinks, activity schedules of deployed sensors, and data flow routes from sensors to sinks over a finite planning horizon subject to coverage, flow conservation, energy consumption, and budget constraints. Unfortunately, it is difficult to solve this model exactly even for small instances. Therefore, we propose two approximate solution methods: a Lagrangean heuristic and a two-stage heuristic in which sensors are deployed and an activity schedule is found in the first stage, whereas sinks are located and sensor-to-sink data flow routes are determined in the second stage. Computational experiments performed on various test instances indicate that the Lagrangean heuristic is both efficient and accurate and also outperforms the two-stage heuristic.

Suggested Citation

  • Y B Türkoğulları & N Aras & İ K Altınel & C Ersoy, 2010. "Optimal placement, scheduling, and routing to maximize lifetime in sensor networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1000-1012, June.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:6:d:10.1057_jors.2008.187
    DOI: 10.1057/jors.2008.187
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.187
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfieri, A. & Bianco, A. & Brandimarte, P. & Chiasserini, C.F., 2007. "Maximizing system lifetime in wireless sensor networks," European Journal of Operational Research, Elsevier, vol. 181(1), pages 390-402, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerulli, R. & De Donato, R. & Raiconi, A., 2012. "Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges," European Journal of Operational Research, Elsevier, vol. 220(1), pages 58-66.
    2. Keskin, Muhammed Emre, 2017. "A column generation heuristic for optimal wireless sensor network design with mobile sinks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 291-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerulli, R. & De Donato, R. & Raiconi, A., 2012. "Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges," European Journal of Operational Research, Elsevier, vol. 220(1), pages 58-66.
    2. Rossi, André & Singh, Alok & Sevaux, Marc, 2013. "Lifetime maximization in wireless directional sensor network," European Journal of Operational Research, Elsevier, vol. 231(1), pages 229-241.
    3. TürkogullarI, Yavuz B. & Aras, Necati & AltInel, I. Kuban & Ersoy, Cem, 2010. "A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1014-1026, December.
    4. Luo, Wenchang & Gu, Boyuan & Lin, Guohui, 2018. "Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments," European Journal of Operational Research, Elsevier, vol. 271(2), pages 462-473.
    5. Xiaojun Zhu & Guihai Chen & Shaojie Tang & Xiaobing Wu & Bing Chen, 2016. "Fast Approximation Algorithm for Maximum Lifetime Aggregation Trees in Wireless Sensor Networks," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 417-431, August.
    6. Berlińska, Joanna, 2015. "Scheduling for data gathering networks with data compression," European Journal of Operational Research, Elsevier, vol. 246(3), pages 744-749.
    7. Castaño, Fabian & Bourreau, Eric & Velasco, Nubia & Rossi, André & Sevaux, Marc, 2015. "Exact approaches for lifetime maximization in connectivity constrained wireless multi-role sensor networks," European Journal of Operational Research, Elsevier, vol. 241(1), pages 28-38.
    8. Li, Xiangyong & Aneja, Y.P. & Huo, Jiazhen, 2012. "A robust branch-and-cut approach for the minimum-energy symmetric network connectivity problem," Omega, Elsevier, vol. 40(2), pages 210-217, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:6:d:10.1057_jors.2008.187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.