IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i8d10.1057_palgrave.jors.2601766.html
   My bibliography  Save this article

A genetic algorithm for flow shop scheduling problems

Author

Listed:
  • O Etiler

    (ŞIŞECAM)

  • B Toklu

    (Gazi University)

  • M Atak

    (Loughborough University)

  • J Wilson

    (Loughborough University)

Abstract

Many scheduling problems are NP-hard problems. For such NP-hard combinatorial optimization problems, heuristics play a major role in searching for near-optimal solutions. In this paper we develop a genetic algorithm-based heuristic for the flow shop scheduling problem with makespan as the criterion. The performance of the algorithm is compared with the established NEH algorithm. Computational experience indicates that genetic algorithms can be good techniques for flowshop scheduling problems.

Suggested Citation

  • O Etiler & B Toklu & M Atak & J Wilson, 2004. "A genetic algorithm for flow shop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 830-835, August.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:8:d:10.1057_palgrave.jors.2601766
    DOI: 10.1057/palgrave.jors.2601766
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601766
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    2. Ho, Johnny C. & Chang, Yih-Long, 1991. "A new heuristic for the n-job, M-machine flow-shop problem," European Journal of Operational Research, Elsevier, vol. 52(2), pages 194-202, May.
    3. Koulamas, Christos, 1998. "A new constructive heuristic for the flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 105(1), pages 66-71, February.
    4. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    5. David G. Dannenbring, 1977. "An Evaluation of Flow Shop Sequencing Heuristics," Management Science, INFORMS, vol. 23(11), pages 1174-1182, July.
    6. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    7. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    2. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 92-99, January.
    3. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "Erratum: A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1423-1430, July.
    4. J N D Gupta & J E Schaller, 2006. "Minimizing flow time in a flow-line manufacturing cell with family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 163-176, February.
    5. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    6. J Jackman & Z Guerra de Castillo & S Olafsson, 2011. "Stochastic flow shop scheduling model for the Panama Canal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 69-80, January.
    7. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
    8. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    2. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    3. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    4. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    5. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    6. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    7. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    8. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    9. W Q Huang & L Wang, 2006. "A local search method for permutation flow shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1248-1251, October.
    10. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    11. Koulamas, Christos, 1998. "A new constructive heuristic for the flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 105(1), pages 66-71, February.
    12. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
    13. Onwubolu, Godfrey & Davendra, Donald, 2006. "Scheduling flow shops using differential evolution algorithm," European Journal of Operational Research, Elsevier, vol. 171(2), pages 674-692, June.
    14. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    15. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    16. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    17. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    18. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    19. Schaller, Jeffrey E. & Gupta, Jatinder N. D. & Vakharia, Asoo J., 2000. "Scheduling a flowline manufacturing cell with sequence dependent family setup times," European Journal of Operational Research, Elsevier, vol. 125(2), pages 324-339, September.
    20. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:8:d:10.1057_palgrave.jors.2601766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.