IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v52y2001i6d10.1057_palgrave.jors.2601133.html
   My bibliography  Save this article

Time series forecasting with neural network ensembles: an application for exchange rate prediction

Author

Listed:
  • G P Zhang

    (Georgia State University)

  • V L Berardi

    (Kent State University)

Abstract

This paper investigates the use of neural network combining methods to improve time series forecasting performance of the traditional single keep-the-best (KTB) model. The ensemble methods are applied to the difficult problem of exchange rate forecasting. Two general approaches to combining neural networks are proposed and examined in predicting the exchange rate between the British pound and US dollar. Specifically, we propose to use systematic and serial partitioning methods to build neural network ensembles for time series forecasting. It is found that the basic ensemble approach created with non-varying network architectures trained using different initial random weights is not effective in improving the accuracy of prediction while ensemble models consisting of different neural network structures can consistently outperform predictions of the single ‘best’ network. Results also show that neural ensembles based on different partitions of the data are more effective than those developed with the full training data in out-of-sample forecasting. Moreover, reducing correlation among forecasts made by the ensemble members by utilizing data partitioning techniques is the key to success for the neural ensemble models. Although our ensemble methods show considerable advantages over the traditional KTB approach, they do not have significant improvement compared to the widely used random walk model in exchange rate forecasting.

Suggested Citation

  • G P Zhang & V L Berardi, 2001. "Time series forecasting with neural network ensembles: an application for exchange rate prediction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 652-664, June.
  • Handle: RePEc:pal:jorsoc:v:52:y:2001:i:6:d:10.1057_palgrave.jors.2601133
    DOI: 10.1057/palgrave.jors.2601133
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601133
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:52:y:2001:i:6:d:10.1057_palgrave.jors.2601133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.